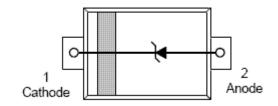


Transient Voltage Suppressors for ESD Protection

General Description

The LESD5Z5.0T1G Series is designed to protect voltage sensitive components from ESD and transient voltage events. Excellent clamping capability, low leakage, and fast response time, make these parts ideal for ESD protection on designs where board space is at a premium.

Applications


- Cellular phones
- Portable devices
- Digital cameras
- Power supplies

Features

- Small Body Outline Dimensions
- Low Body Height
- Stand-off Voltage: 5.0 V
- Peak Power up to 100 Watts @ 8 x 20 us Pulse
- Low Leakage
- Response Time is Typically < 1 ns
- ESD Rating of Class 3 per Human Body Model
- IEC61000-4-2 Level 4 ESD Protection
- IEC61000-4-4 Level 4 EFT Protection
- We declare that the material of product compliance with RoHS regirements.
- S- Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.

LESD5Z5.0T1G S-LESD5Z5.0T1G

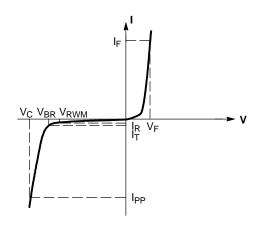
ORDERING INFORMATION

Device	Package	Shipping
LESD5Z5.0T1G S-LESD5Z5.0T1G	SOD-523	3000/Tape & Reel

Absolute Ratings (T_{amb}=25°C)

Symbol	Parameter	Value	Units
P _{PP}	Peak Pulse Power (t _p = 8/20μs)	100	W
TL	Maximum lead temperature for soldering during 10s	260	°C
T _{stg}	Storage Temperature Range	-55 to +150	°C
T _{op}	Operating Temperature Range	-40 to +125	°C
Tj	Maximum junction temperature	150	°C
	IEC61000-4-2 (ESD) air discharge contact discharge	±15 ±8	KV

Oct.2019 Rev.C 1/7



LESD5Z5.0T1G, S-LESD5Z5.0T1G

Electrical Parameter

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

Symbol	Parameter				
I _{PP}	Maximum Reverse Peak Pulse Current				
V _C	Clamping Voltage @ I _{PP}				
V _{RWM}	Working Peak Reverse Voltage				
I _R	Maximum Reverse Leakage Current @ V _{RWM}				
V_{BR}	Breakdown Voltage @ I _T				
I _T	Test Current				
lF	Forward Current				
V _F	Forward Voltage @ I _F				
P _{pk}	Peak Power Dissipation				
C Capacitance @ V _R = 0 and f = 1.0 MHz					

Electrical Characteristics Ratings at 25°C ambient temperature unless otherwise specified.VF = 0.9V at IF = 10mA

Device	Device Marking	V _{RWM} (V)	I _R (uA) @ V _{RWM}	V _{BR} (V)@ I _T (Note 1)	Ι _Τ	V _C (V) @ Max I _{PP} *	I _{PP} (A)*	P _{PK} (W)*	C (pF)
		Max	Max	Min	mA	Max	Max	Max	Тур
LESD5Z5.0T1G	ZF	5.0	1	6.2	1.0	14	5	100	35

^{*}Surge current waveform per Figure 1.

Oct.2019 Rev.C 2/7

^{1.} V_{BR} is measured with a pluse test current I_T at an ambient temperature of 25 $^\circ\!\!\!\!\!$ C .

LESD5Z5.0T1G, S-LESD5Z5.0T1G

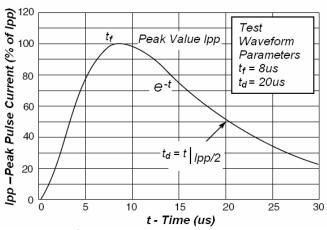


Fig1. Pulse Waveform

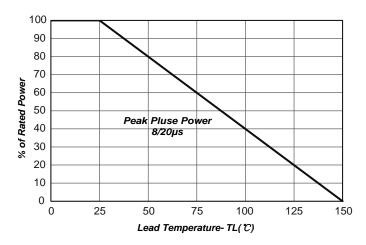
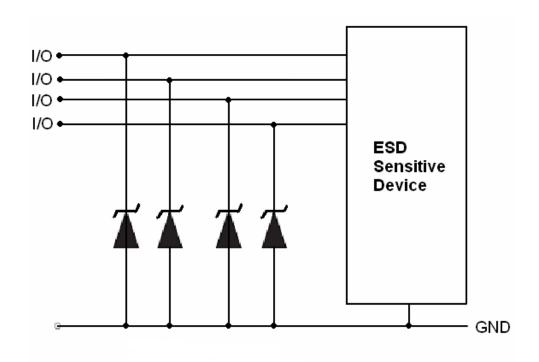


Fig2.Power Derating

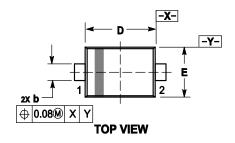
Application Note

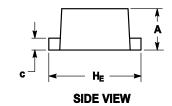
Electrostatic discharge (ESD) is a major cause of failure in electronic systems. Transient Voltage Suppressors (TVS) are an ideal choice for ESD protection. They are capable of clamping the incoming transient to a low enough level such that damage to the protected semiconductor is prevented.

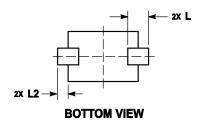

Surface mount TVS offer the best choice for minimal lead inductance. They serve as parallel protection elements, connected between the signal line to ground. As the transient rises above the operating voltage of the device, the TVS becomes a low impedance path diverting the transient current to ground. The LESD5Z5.0T1G is the ideal board evel protection of ESD sensitive semiconductor components.

The tiny SOD523 package allows design flexibility in the design of high density boards where the space saving is at a premium. This enables to shorten the routing and contributes to hardening againt ESD.

Oct.2019 Rev.C 3/7

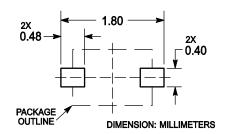

$\mathsf{LESD5Z5.0T1G} \;, \, \mathsf{S\text{-}LESD5Z5.0T1G}$





LESD5Z5.0T1G, S-LESD5Z5.0T1G

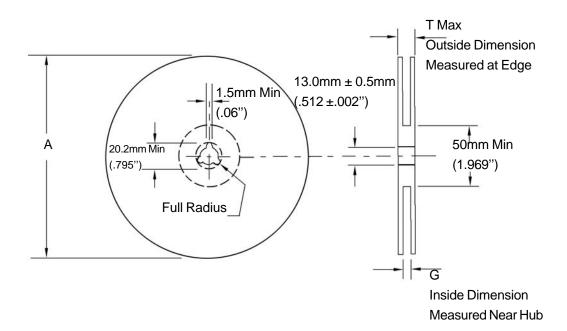
OUTLINE AND DIMENSIONS



Notes:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETERS.
- 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.50	0.60	0.70	0.020	0.024	0.028	
b	0.25 0.3		0.35	0.010	0.012	0.014	
С	0.07	0.14	0.20	0.003	0.006	0.008	
D	1.10	1.20	1.30	0.043	0.047	0.051	
Е	0.70 0.80		0.90	0.028	0.031	0.035	
H _E	1.50	1.60	1.70	0.059	0.063	0.067	
L	0.30 REF			0.012 REF			
L ₂	0.15	5 0.20 0.25		0.006	0.008	0.010	


SOLDERING FOOTPRINT

Oct.2019 Rev.C 5/7

EMBOSSED TAPE AND REEL DATA FOR DISCRETES CARRIER TAPE SPECIFICATIONS

Size	A Max	G	T Max	
8 mm	178.0mm	8.4mm+1.5mm, -0.0	10.9mm	
	(7.0")	(.33"+.039", -0.00)	(.43")	

Reel Dimensions

Metric Dimensions Govern — English are in parentheses for reference only

Storage Conditions

Temperature: 5 to 40 Deg.C (20 to 30 Deg. C is preferred) Humidity: 30 to 80 RH (40 to 60 is preferred)


Recommended Period: One year after manufacturing

(This recommended period is for the soldering condition only. The characteristics and reliabilities of the products are not restricted to this limitation)

Oct.2019 Rev.C 6/7

Shipment Specification

12 Inner Box/Carton

360KPCS/Carton 960KPCS/Carton (SOT-723,SOD-723,SOD-923)

Oct.2019 Rev.C 7/7