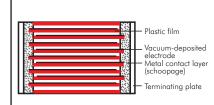
WIMA SMD-PET

Metallized Polyester (PET) SMD Film Capacitors with Box Encapsulation. Capacitances from 0.01 μ F to 6.8 μ F. Rated Voltages from 63 VDC to 1000 VDC. Size Codes from 1812 to 6054.

Special Features

- Size codes 1812, 2220, 2824, 4030, 5040 and 6054 with PET and encapsulated
- Operating temperature up to 100° C
- Self-healing
- According to RoHS 2011/65/EU

Typical Applications


For general DC-applications e.g.

- By-pass
- Blocking
- Coupling and decoupling
- Timing

Construction

Dielectric:

Polyethylene-terephthalate (PET) film Capacitor electrodes: Vacuum-deposited Internal construction:

Encapsulation:

Solvent-resistant, flame-retardant plastic case, UL 94 V-0

Terminations: Tinned plates.

Marking:

Box colour: Black.

Electrical Data

Capacitance range: 0.01 μF to 6.8 μF **Rated voltages:** 63 VDC, 100 VDC, 250 VDC, 400 VDC, 630 VDC, 1000 VDC

Capacitance tolerances: ±20%, ±10% (±5% available subject to special enquiry) Operating temperature range:

 -55° C to $+100^{\circ}$ C $(+125^{\circ}$ C available subject to special enquiry)

Climatic test category: 55/100/21 according to IEC for size codes 1812 to 2824 55/100/56 according to IEC

for size codes 4030 to 6054 Insulation resistance at +20° C:

Ur	U _{test}	C ≤ 0.33 µF	0.33 µF < C ≤ 6.8 µF
63 VDC 100 VDC	50 V 100 V	≥ 3.75 x 10 ³ MΩ	\geq 1250 sec (M $\Omega \times \mu$ F)
≥ 250 VDC	100 V	\ge 1 x 10 ⁴ MQ	\geq 3000 sec (M $\Omega \times \mu$ F)

Test voltage: 1.6 U_r, 2 sec.

A voltage derating factor of 1.25 % per K

must be applied from +85° C for DC

voltages and from +75° C for AC

Operational life > 300 000 hours

Failure rate < 2 fit (0.5 x U_r and 40° C)

Voltage derating:

voltages

Reliability:

Measuring time: 1 min.

Dissipation factors at +20° C: tan δ

at f	C ≤ 0.1 µF	0.1 µF < C ≤ 1.0 µF	C > 1.0 µF
1 kHz	≤ 8 x 10 ⁻³	≤ 8 x 10 ⁻³	\leq 10 x 10 ⁻³
10 kHz	≤ 15 x 10 ⁻³	≤ 15 x 10-3	-
100 kHz	≤ 30 x 10 ⁻³	—	-

Maximum pulse rise time: for pulses equal to the rated voltage

Capacitance		Pulse	e rise time V	/µsec		
μF			k. operation			
μ	63 VDC	100 VDC	250 VDC	400 VDC	630 VDC	1000 VDC
0.01 0.022	30/300	35/350	40/400	35/350	40/400	50/500
0.033 0.068	20/200	20/200	40/400	21/210	25/250	32/320
0.1 0.22	10/100	10/100	12/120	14/140	17/170	-
0.33 0.68	8/80	6/60	9/90	10/100	-	-
1.0 2.2	3.5/35	4/40	7/70	-	-	-
3.3 6.8	3/30	3/30	-	-	-	-

Dip Solder Test/Processing

Resistance to soldering heat:

Test Tb in accordance with DIN IEC 60068-2-58/DIN EN 60384-19. Soldering bath temperature max. 260° C. Soldering duration max. 5 sec. Change in capacitance Δ C/C < 5%. **Soldering process:**

Re-flow soldering (see temperature/time graphs page 13).

Packing

Available taped and reeled in blister pack.

Detailed taping information and graphs at the end of the catalogue.

For further details and graphs please refer to Technical Information.

WIMA SMD-PET

Continuation

General Data

	63 VDC/40 VAC*				10	00 VDC/63 VAC*	250 VDC/160 VAC*				
Capacitance	Size	H	Part number	Size	H	Part number	Size	H	Part number		
	code	± 0.3		code	± 0.3		code	± 0.3			
0.01 µF	1812	3.0	SMDTC02100KA00	1812	3.0	SMDTD02100KA00	2220	3.5	SMDTF02100QA00		
	2220 2824	3.5 3.0	SMDTC02100QA00 SMDTC02100TA00	2220 2824	3.5 3.0	SMDTD02100QA00 SMDTD02100TA00	2824	3.0	SMDTF02100TA00		
0.015 "	1812	3.0	SMDTC02150KA00	1812	3.0	SMDTD02150KA00	2220	3.5	SMDTF02150QA00		
0.010 "	2220	3.5	SMDTC02150QA00	2220	3.5	SMDTD02150QA00	2824	3.0	SMDTF02150CQA00		
	2824	3.0	SMDTC02150TA00	2824	3.0	SMDTD02150TA00	2021				
0.022 "	1812	3.0	SMDTC02220KA00	1812	3.0	SMDTD02220KA00	2220	3.5	SMDTF02220QA00		
	2220	3.5	SMDTC02220QA00	2220	3.5	SMDTD02220QA00	2824	3.0	SMDTF02220TA00		
	2824	3.0	SMDTC02220TA00	2824	3.0	SMDTD02220TA00					
0.033 "	1812	3.0	SMDTC02330KA00	1812	3.0	SMDTD02330KA00	2220	3.5	SMDTF02330QA00		
	2220 2824	3.5 3.0	SMDTC02330QA00 SMDTC02330TA00	2220 2824	3.5 3.0	SMDTD02330QA00 SMDTD02330TA00	2824 4030	3.0	SMDTF02330TA00 SMDTF02330VA00		
0.047 "	1812	3.0	SMDTC023301A00	1812	3.0	SMDTD023301A00	2220	3.5	SMDTF02470QA00		
0.047 "	2220	3.5	SMDTC02470RA00	2220	3.5	SMDTD02470RA00	2824	3.0	SMDTF02470QA00		
	2824	3.0	SMDTC02470TA00	2824	3.0	SMDTD02470TA00	4030	5.0	SMDTF02470VA00		
0.068 "	1812	3.0	SMDTC02680KA00	1812	3.0	SMDTD02680KA00	2220	4.5*	SMDTF02680QB00		
"	2220	3.5	SMDTC02680QA00	2220	3.5	SMDTD02680QA00	2824	3.0	SMDTF02680TA00		
	2824	3.0	SMDTC02680TA00	2824	3.0	SMDTD02680TA00	4030	5.0	SMDTF02680VA00		
0.1 µF	1812	4.0*	SMDTC03100KB00	1812	4.0*	SMDTD03100KB00	2220	4.5*	SMDTF03100QB00		
	2220	3.5	SMDTC03100QA00	2220	3.5	SMDTD03100QA00	2824	5.0	SMDTF03100TB00		
	2824	3.0	SMDTC03100TA00	2824	3.0	SMDTD03100TA00	4030	5.0	SMDTF03100VA00		
0.15 "	1812	4.0*	SMDTC03150KB00	1812	4.0	SMDTD03150KB00	2824	5.0	SMDTF03150TB00		
	2220 2824	3.5 3.0	SMDTC03150QA00 SMDTC03150TA00	2220 2824	3.5 3.0	SMDTD03150QA00 SMDTD03150TA00	4030	5.0	SMDTF03150VA00		
0.22 "	1812	4.0*	SMDTC03220KB00	1812	4.0	SMDTD031301A00	2824	5.0	SMDTF03220TB00		
0.22 "	2220	3.5	SMDTC03220R000	2220	3.5	SMDTD03220R000	4030	5.0	SMDTF032201600		
	2824	3.0	SMDTC032200, 100	2824	3.0	SMDTD03220TA00	1000				
0.33 "	1812	4.0	SMDTC03330KB00	2220	4.5	SMDTD03330QB00	2824	5.0	SMDTF03330TB00		
	2220	4.5*	SMDTC03330QB00	2824	5.0	SMDTD03330TB00	4030	5.0	SMDTF03330VA00		
	2824	5.0*	SMDTC03330TB00	4030	5.0	SMDTD03330VA00	5040	6.0	SMDTF03330XA00		
0.47 "	1812	4.0	SMDTC03470KB00	2220	4.5	SMDTD03470QB00	4030	5.0	SMDTF03470VA00		
	2220	4.5*	SMDTC03470QB00	2824	5.0	SMDTD03470TB00	5040	6.0	SMDTF03470XA00		
0.40	2824	5.0*	SMDTC03470TB00	4030	5.0	SMDTD03470VA00	5040				
0.68 "	2220 2824	4.5 5.0*	SMDTC03680QB00 SMDTC03680TB00	2824 4030	5.0 5.0	SMDTD03680TB00 SMDTD03680VA00	5040	6.0	SMDTF03680XA00		
	4030	5.0	SMDTC03680VA00	5040	6.0	SMDTD03680XA00					
1.0 µF	2220	4.5	SMDTC04100QB00	2824	5.0	SMDTD04100TB00	6054	7.0	SMDTF04100YA00		
	2824	5.0*	SMDTC04100TB00	4030	5.0	SMDTD04100VA00					
	4030	5.0	SMDTC04100VA00	5040	6.0	SMDTD04100XA00					
1.5 "	2824	5.0	SMDTC04150TB00	4030	5.0	SMDTD04150VA00					
	4030	5.0	SMDTC04150VA00	5040	6.0	SMDTD04150XA00			cording to catalogue 2013		
	0004	5.0		50.40	10		still o	availal	oie		
2.2 "	2824 4030	5.0 5.0	SMDTC04220TB00 SMDTC04220VA00	5040	6.0	SMDTD04220XA00					
	4030	5.0	SIVID1C04220VA00								
3.3 "	4030	5.0	SMDTC04330VA00	5040	6.0	SMDTD04330XA00					
0.0 "	1000	0.0		0010	0.0			Part	number completion:		
								Toler	rance: 20 % = M		
4.7 "	5040	6.0	SMDTC04470XA00	6054	7.0	SMDTD04470YA00			10 % = K		
									5 % = J		
(0	1051	7.0						Pack			
6.8 "	6054	7.0	SMDTC04680YA00					Pin le	ength: none=00		
								Tape	d version see page 147.		
* 10		1.4					1				

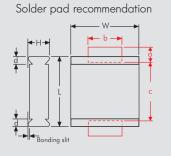
* AC voltage: f = 50 Hz; 1.4 x U_{rms} + UDC \leq U_r

Dims. in mm.

Rights reserved to amend design data without prior notification.

WIMA SMD-PET

Continuation



General Data

		40	0 VDC/200 VAC*		63	0 VDC/300 VAC*	1000 VDC/400 VAC*				
Capacitance	Size code	Н ± 0.3	Part number	Size code	H ± 0.3	Part number	Size code	H ± 0.3	Part number		
0.01 µF	2824 4030	3.0 5.0	SMDTG02100TA00 SMDTG02100VA00	4030	5.0	SMDTJ02100VA00					
0.015 "	2824 4030	3.0 5.0	SMDTG02150TA00 SMDTG02150VA00	4030	5.0	SMDTJ02150VA00	5040	6.0	SMDTO12150XA00		
0.022 "	2824 4030	5.0* 5.0	SMDTG02220TB00 SMDTG02220VA00	5040	6.0	SMDTJ02220XA00	5040	6.0	SMDTO12220XA00		
0.033 "	2824 4030	5.0 5.0	SMDTG02330TB00 SMDTG02330VA00	5040	6.0	SMDTJ02330XA00	5040	6.0	SMDTO12330XA00		
0.047 "	2824 4030	5.0 5.0	SMDTG02470TB00 SMDTG02470VA00	5040	6.0		6054	7.0	SMDTO12470YA00		
0.068 "	4030 5040	5.0 6.0	SMDTG02680VA00 SMDTG02680XA00	5040	6.0	SMDTJ02680XA00					
0.1 µF	4030 5040	5.0 6.0	SMDTG03100VA00 SMDTG03100XA00	6054	7.0	SMDTJ03100YA00					
0.15 "	4030 5040	5.0 6.0	SMDTG03150VA00 SMDTG03150XA00	6054	7.0	SMDTJ03150YA00					
0.22 "	5040	6.0	SMDTG03220XA00	6054	7.0	SMDTJ03220YA00					
0.33 "	5040	6.0	SMDTG03330XA00								
0.47 "	6054	7.0	SMDTG03470YA00								

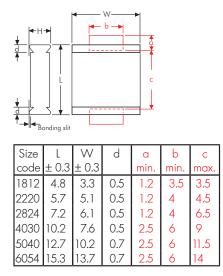
* AC voltage: f = 50 Hz; 1.4 x U $_{\rm rms}$ + UDC \leq U $_{\rm r}$

* Version according to catalogue 2013 still available

Part number	r completion:
Tolerance:	20 % = M 10 % = K 5 % = J
Packing: Pin length:	bulk = S none = 00
Taped version	on see page 147.

Size code	L ±0.3	₩ ±0.3	d	a min.	b min.	c max.
1812	4.8	3.3	0.5	1.2	3.5	3.5
2220	5.7	5.1	0.5	1.2	4	4.5
2824	7.2	6.1	0.5	1.2	4	6.5
4030	10.2	7.6	0.5	2.5	6	9
5040	12.7	10.2	0.7	2.5	6	11.5
6054	15.3	13.7	0.7	2.5	6	14

Dims. in mm.

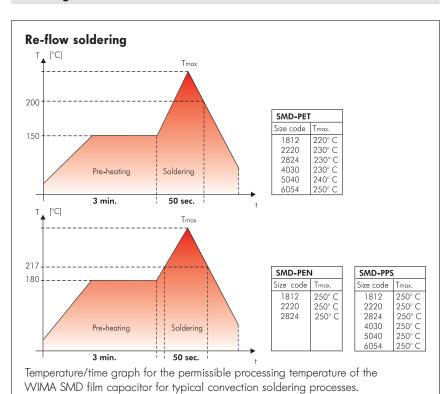

Recommendation for Processing and Application of SMD Capacitors

Layout Form

The components can generally be positioned on the carrier material as desired. In order to prevent soldering shadows or ensure regular temperature distribution, extreme concentration of the components should be avoided. In practice, it has proven best to keep a minimum distance of the soldering surfaces between two WIMA SMDs of twice the height of the components.

Solder Pad Recommendation

The solder pad size recommendations given for each individual series are to be understood as minimum dimensions which can at any time be adjusted to the layout form.


Processing

The processing of SMD components

- assembling

- soldering
- electrical final inspection/calibrating

must be regarded as a complete process. The soldering of the printed circuit board, for example, can constitute considerable stress on all the electronic components. The manufacturer's instructions on the processing of the components are mandatory.

Due to versatile procedures exact pro-

cessing parameters for re-flow soldering processes cannot be specified. The graph depicted is to be understood as a recommendation to help establishing a suitable soldering profile fulfilling the requirements in practice at the user. During processing a max. temperature of $T=210^{\circ}$ C inside the component should not be exceeded. Due to the differing heat absorption the length of the soldering process should be kept as short as possible for smaller size codes.

SMD Handsoldering

Soldering Process

WIMA SMD capacitors with plastic film dielectric are generally suitable for hand-soldering, e.g. for lab purposes, with a soldering iron where, however, similar to automated soldering processes, a certain duration and temperature should not be exceeded. These parameters are dependent on the physical size of the components and the relevant heat absorption involved. The below data are to be regarded as guideline values and should serve to avoid damage to the dielectric caused by excessive heat during the soldering process. The soldering quality depends on the tool used and on the skill and experience of the person with the soldering iron in hand.

Size code	Temperature °C / °F	Time duration
1812 2220 2824 4030	250 / 482 250 / 482 260 / 500 260 / 500	2 sec plate 1 / 5 sec off / 2 sec plate 2 3 sec plate 1 / 5 sec off / 3 sec plate 2 3 sec plate 1 / 5 sec off / 3 sec plate 2 5 sec plate 1 / 5 sec off / 5 sec plate 2 5 sec plate 1 / 5 sec off / 5 sec plate 2
5040 6054	260 / 500 260 / 500	5 sec plate 1 / 5 sec off / 5 sec plate 2 5 sec plate 1 / 5 sec off / 5 sec plate 2

04.18

Recommendation for Processing and Application of SMD Capacitors (Continuation)

Solder Paste

To achieve reliable soldering results one of the following solder alloys have from case to case proven being workable:

Lead free solder paste

Sn - Bi Sn - Zn (Bi) Sn - Ag - Cu (suitable for SMD-PET 5040/ 6054, SMD-PEN and SMD-PPS)

Solder paste with lead

Sn - Pb - Ag (Sn60-Pb40-A, Sn63-Pb37-A)

Washing

WIMA SMD components with plastic encapsulation - like all other components of similar construction irrespective of the make - cannot be regarded as hermetically sealed. Due to today's common washing substances, e.g. on aqueous basis instead of the formerly used halogenated hydrocarbons, with enhanced washing efficiency it became obvious that assembled SMD capacitors may show an impermissibly high deviation of the electrical parameters after a corresponding washing process. Hence it is recommended to refrain from applying industrial washing processes for WIMA SMD capacitors in order to avoid possible damages.

Initial Operation/Calibration

Due to the stress which the components are subjected to during processing, reversible parameter changes occur in almost all electronic components. The capacitance recovery accuracy to be expected with careful processing is within a scope of

|∆C/C**|**≤ 5 %.

For the initial operation of the device a minimum storage time of

 $t \ge 24$ hours

is to be taken into account. With calibrated devices or when the application is largely dependent on capacitance it is advisable to prolong the storage time to

 $t \ge 10 \text{ days}$

In this way ageing effects of the capacitor structure can be anticipated. Parameter changes due to processing are not to be expected after this period of time

Humidity Protection Bags

Taped WIMA SMD capacitors are shipped in humidity protection bags according to JEDEC standard (ESD/EMI-shield/watervapour proof).

Under controlled conditions the components can be stored two years and more in the originally sealed bag. Opened packing units should immediately be used up for processing. If storage is necessary the opened packing units should be stored air-tight in the original plastic bag.

Reliability

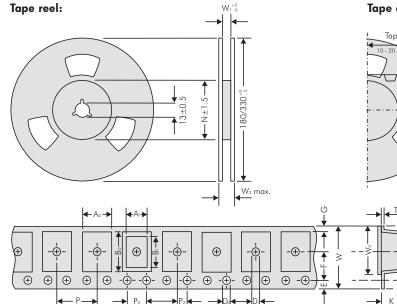
Taking account of the manufacturer's guidelines and compatible processing, the WIMA SMD stand out for the same high quality and reliability as the analogous through-hole WIMA series. The technology of metallized film capacitors used e.g. in WIMA SMD-PET achieves the best values for all fields of application. The expected value is about:

$\lambda_0 \leqslant 2$ fit

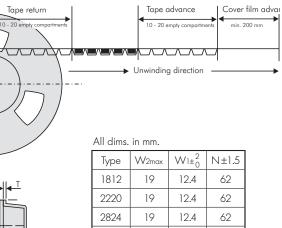
Furthermore the production of all WIMA components is subject to the regulations laid down by ISO 9001:2008 as well as the guidelines for component specifications set out by IEC quality assessment system (IECQ) for electronic components.

Electrical Characteristics and Fields of Application

Basically the WIMA SMD series have the same electrical characteristics as the analogous through-hole WIMA capacitors. Compared to ceramic or tantalum dielectrics WIMA SMD capacitors have a number of other outstanding qualities:


- favourable pulse rise time
- Iow ESR
- Iow dielectric absorption
- available in high voltage series
- Iarge capacitance spectrum
- stand up to high mechanical stress
- good long-term stability

As regards technical performance as well as quality and reliability, the WIMA SMD series offer the possibility to cover nearly all applications of conventionally through-hole film capacitors with SMD components. Furthermore, the WIMA SMD series can now be used for all the demanding capacitor applications for which, in the past, the use of through-hole components was mandatory:


- measuring techniques
- oscillator circuits
- differentiating and integrating circuits
- A/D or D/A transformers
- sample and hold circuits
- automotive electronics

With the WIMA SMD programme available today, the major part of all plastic film capacitors can be replaced by WIMA SMD components. The field of application ranges from standard coupling capacitors to use in switch-mode power supplies as filter or charging capacitors with high voltage and capacitance values, as well as in telecommunications e.g. the well-known telephone capacitor 1μ F/250VDC.

Blister Tape Packaging and Packing Units of the WIMA SMD Capacitors

Tape advance and return:

22.4

30.4

30.4

Size Code	1812	A0 ±0,1	Aı	Bo ±0,1	Bı	Do +0,1	D1 +0.1	P ±0.1	Po* ±0.1	P2 ±0.05	E ±0.1	F ±0.05	G	W ±0,3	W0 ±0,2	K ±0,1	T ±0.1
Box size	Code	±0.1		10.1		-0	-0	±0.1	10.1	10.00	10.1	10.00		10.0	10.2	10.1	±0.1
4.8×3.3×3	КА	3.55	3.3	5.1	4.8	Ø1.5	Ø1.5	8	4	2	1.75	5.5	2.2	12	9.5	3.4	0.3
4.8×3.3×4	КВ	3.55	3.3	5.1	4.8	Ø1.5	Ø1.5	8	4	2	1.75	5.5	2.2	12	9.5	4.4	0.3
Size Code	2220	A0 ±0,1	Aı	Bo ±0.1	Bı	Do +0,1	D1 +0.1	P ±0.1	Po* ±0.1	P2 ±0.05	E ±0.1	F ±0.05	G	W ±0,3	W0 ±0.2	K ±0,1	T ±0,1
Box size	Code	±0.1		±0.1		-0	-0	±0.1	±0.1	±0.05	±0.1	±0.05		±0.5	±0.2	±0.1	±0.1
5.7x5.1x3.5	QA	6.3	5.7	5.6	5.1	Ø1.5	Ø1.5	8	4	2	1.75	5.5	1.95	12	9.5	3.7	0.3
5.7x5.1x4.5	QB	6.3	5.7	5.6	5.1	Ø1.5	Ø1.5	8	4	2	1.75	5.5	1.95	12	9.5	4.7	0.3

Size Code	2824	A0 ±0,1	A۱	Bo ±0,1	Bı	Do +01	D1	P +0.1	Po* ±0.1	P2 ±0.05	E +01	F ±0.05	G	W ±0,3	W0 +0.2	K ±0.1	T ±0.1
Box size	Code	±0.1		10.1		-0	-0	10.1	10.1	10.00	10.1	10.00		10.0	± 0.2	10.1	10.1
7.2×6.1×3	TA	6.6	6.1	7.7	7.2	Ø1.5	Ø1.5	12	4	2	1.75	5.5	0.9	12	9.5	3.4	0.3
7.2×6.1×5	TB	6.6	6.1	7.7	7.2	Ø1.5	Ø1.5	12	4	2	1.75	5.5	0.9	12	9.5	5.4	0.4

	Code			Bo ±0.1	Bı					P2 ±0.05					₩0 ±0.2		T ±0.1
Size Code 4030	VA	10.7	10.2	8.1	9.1	Ø1.5	Ø1.5	16	4	2	1.75	7.5	1.9	16	13.3	5.5	0.3
Size Code 5040	ХА	13.5	12.7	11	11.5	Ø1.5	Ø1.5	16	4	2	1.75	11.5	4.7	24	21.3	6.5	0.3
Size Code 6054	YA	17.0	16.5	15.6	15.0	Ø1.5	Ø1.5	20	4	2	1.75	11.5	2.95	24	21.3	7.5	0.3

* cumulative after 10 steps \pm 0.2 mm max.

Samples and pre-production needs on request or 1 Reel minimum.

Packing units

4030

5040

6054

taped Reel 180 mm Ø	taped Reel 330 mm Ø	bulk Standard
700	2500	3000
500	2000	3000

16.4

24.4

24.4

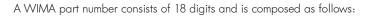
60

90

90

taped Reel	taped Reel	bulk						
	330 mm Ø	Standard						
500	1800	3000						
400	1500	3000						

taped Reel	bulk					
330 mm Ø	Standard					
1500	2000					
750	2000					
taped	bulk					


Reel 330 mm Ø	Standard
775	2000
600	1000
450	500

Part number codes for SMD packing

W (Blister)	Ø in mm	Code							
12	180	Р							
12	330	Q							
16	330	R							
24	330	Т							
· · · ·									
Bulk Stanc	S								

04.18

WIMA Part Number System

- Field 1 4: Type description
- Field 5 6: Rated voltage
- Field 7 10: Capacitance
- Field 11 12: Size and PCM
- Field 13 14: Version code (e.g. Snubber versions)
- Field 15: Capacitance tolerance
- Field 16: Packing
- Field 17 18: Pin length (untaped)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
м	к	S	2	с	0	2	1	0	0	1	A	0	0	м	S	S	D
	MKS	52		63 \	/DC		0.0)] µF		2.5×6	.5 x 7.2	-	-	20%	bulk	6	-2
SMD-F SMD-F SMD-P FKP 02 MKS 0 FKP 2 FKP 2 FKS 3 FKP 3 MKP 2 MKP 4 MKP 4 MKP 4 MKP 4 MKP 4 MKP 4 MKP 4 MKP 4 MKP 3-> MF 3-> MP 3-> MP 3-> MP 3-> MP 3-> MF 3-> MF 4 Snubbo Snubbo Snubbo Snubbo Snubbo	PEN PPS PS PS PS PS PS PS PS PS P	= SA	ADN ADI ADI PO KS0 S2 PS3 PS4 KS2 PS3 S2 PS3 KS2 PS4 PS5 PS5 PS6 PS7 PS7<	Rated v 50 VDC 63 VDC 250 VDC 400 VDC 400 VDC 520 VDC 600 VDC 630 VDC 800 VDC 800 VDC 800 VDC 800 VDC 1000 VE 1000 VE 1000 VE 1000 VE 1000 VE 1000 VE 2500 VE 3000 VE 3000 VE 3000 VE 3000 VE 3000 VE 300 VC 300 VAC 305 VAC 305 VAC 305 VAC 300 VAC 305 VAC 300 VA	= B(C) = C(C)	220 47 0 100 100 15 0 22 0 333 2 47 68 100 0 15 0 22 0 15 0 22 0 33 0 47 1 68 0 0.0 0 0.1 0 0.2 0 0.1 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 <	γ γ 10 ρF 100 ρF 11 μF 12 μF 147 μF 140 μF 140 μF 140 μF	ance: = 0022 = 0047 = 0100 = 0120 = 0220 = 0330 = 0470 = 0680 = 1100 = 1220 = 1330 = 1470 = 1680 = 2220 = 2470 = 3100 = 3220 = 3470 = 4220 = 4420 = 5100 = 5220 = 5470 = 6100 = 7150	4.8x 5.7x 5.7x 7.2x 7.2x 10.2 12.7; 15.3; 2.5x 3x7. 2.5x 3x7. 2.5x 3x8. 3x9 4x9 5x11 6x12 5x14 7x15 7x14 7x15 7x15 7x15 7x15 7x15 7x15 7x15 7x15	3.3 x 3 § 3.3 x 4 § 5.1 x 3.5 5.1 x 4.5 6.1 x 3 § 6.1 x 5 § x 7.6 x 5 (10.2 x 6 (10.2	CM7.5 CM7.5 M 10 M 10 CM 15 PCM 15 PCM 22 PCM 22 PCM 27 PCM 27 PCM 37 5 PCM 37 5 PCM 38 PCM 52	$\begin{array}{rcl} 2 & = & K \\ 220 = & G \\ 220 = & G \\ 220 = & G \\ 4 & = & TI \\ 30 = & V \\ 40 = & X \\ 54 = & Y \\ 54 = & Y \\ 54 = & Y \\ 60 = & Q \\ 11 = & Q \\ 22 = & Q \\ 33 = & Q \\ 44 = & Q \\ 55 = & S \\ 7.5 = & R \end{array}$		Toleran ±20% ±10% ±5% ±2.5% ±1% Packing AMMO AM	= M = K = J = H = E H16.5 3 H16.5 4 H18.5 3 H18.5 4 6.5 360 6.5 360 6.5 3500 6.5 8.5 W12 18 W12 33 W16 33 W16 33 W16 33 Stando	90 x 37(40 x 34(90 x 37(30 30 30 30 30 30 30 30 30 30 30 30 30) = B) = C

The data on this page is not complete and serves only to explain the part number system. Part number information is listed on the pages of the respective WIMA range.

