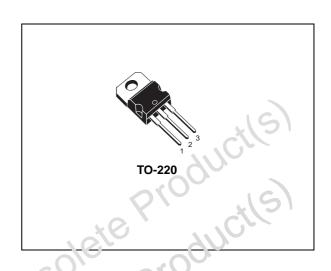


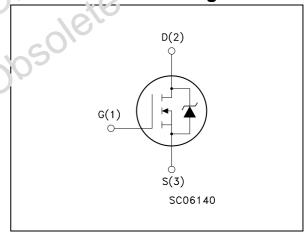
STP50NE10

N-channel 100V - 0.021Ω - 50A TO-220 STripFET™ Power MOSFET

General features


Туре	V _{DSS}	R _{DS(on)}	I _D
STP50NE10	100V	<0.027Ω	50A

- Exceptional high dv/dt capability
- 100% avalanche tested
- Low gate charge at 100 °C
- Application oriented characterization


Description

This Power MOSFET is the latest development of STMicroelectronis unique "Single Feature Size™" strip-based process. The resulting transistor shows extremely high packing density for low onresistance, rugged avalanche characteristics and less critical alignment steps therefore a remarkable manufacturing reproducibility.

■ Switching application **Applications**

Internal schematic diagram

Order codes

Part number	Marking	Package	Packaging
STP50NE10	P50NE10	TO-220	Tube

August 2006 Rev 8 1/12 Contents STP50NE10

Contents

1	Electrical ratings
2	Electrical characteristics
3	Test circuit 8
4	Package mechanical data9
5	Revision history
0050	Package mechanical data

STP50NE10 **Electrical ratings**

Electrical ratings

Table 1. **Absolute maximum ratings**

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage (V _{GS} = 0)	100	V
V _{DGR}	Drain-gate voltage (R _{GS} = 20KΩ)	100	V
V _{GS}	Gate-source voltage	± 20	V
I _D	Drain current (continuous) at T _C = 25°C	50	Α
I _D	Drain current (continuous) at T _C =100°C	35	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	200	A
P _{TOT}	Total dissipation at T _C = 25°C	18C	W
	Derating factor	-400	W/°C
dv/dt ⁽²⁾	Peak diode recovery voltage slope	6	V/ns
T _J T _{stg}	Operating junction temperature Storage temperature	175 -65 to 175	°C

^{1.} Pulse width limited by safe operating area

Table 2. Thermal data

R _{thj-case}	Thermal resis a.vcc junction-case Max	1	°C/W
R _{thj-a}	Thermal esistance junction-ambient Max	62.5	°C/W
Rthc-sink	The med resistance case-sink typ	0.5	°C/W
TO	Maximum lead temperature for soldering purpose	300	°C

Avalanche characteristics

TO THE S	Maximum lead temperature for soldering purpose	300	°C
Table 3. Symbol	Avalanche characteristics Parameter	Value	Uni
l _{AR}	Avalanche current, repetitive or not-repetitive (pulse width limited by Tj Max)	50	Α
E _{AS}	Single pulse avalanche energy (starting Tj=25°C, Id=Iar, Vdd=50V)	300	mJ

I_{SD} \$0A, di/dt \$00A/μs, V_{DD} ≤V_{(BR)DSS}, T_j ≤T _{M_i} χ

STP50NE10 **Electrical characteristics**

2 **Electrical characteristics**

(T_{CASE}=25°C unless otherwise specified)

Table 4. On/off states

Symbol	Parameter	Test condictions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0$	100			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V_{DS} = Max rating, V_{DS} = Max rating @125°C			1 10	μA μA
I _{GSS}	Gate body leakage current (V _{DS} = 0)	V _{GS} = ±20V		(± 1c0	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 10V, I _D = 25A	70	0.021	0.027	Ω

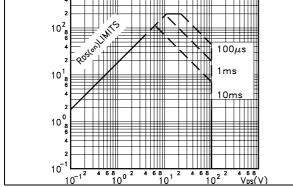
Table 5. **Dynamic**

	Symbol	Parameter	Tost condictions	Min.	Тур.	Max.	Unit
	g _{fs} ⁽¹⁾	Forward transconductance	$V_{DS} > ID(on) \times RDS(on)max$, $I_D = 25A$	20	35		S
	C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	V _{DS} =25V, f=1 MHz, V _{GS} =0		4350 5000 175	6000 675 238	pF pF pF
	t _{d(oi)}	Turn-on Delay Time Rise Time	$V_{DD} = 50V, I_{D} = 25A,$ $R_{G} = 4.7\Omega, V_{GS} = 10V$ (see Figure 12)		25 100	34 135	ns ns
2/250/8	$Q_{ m g}$ $Q_{ m gs}$ $Q_{ m gd}$	Total gate charge Gate-source charge Gate-drain charge	V_{DD} =80V, I_{D} = 50A V_{GS} =10V		123 24 47	166	nC nC nC
Obsole	1. Pulsed: p	oulse duration=300μs, duty cycle	1.5%				

STP50NE10 **Electrical characteristics**

Table 6. Source drain diode

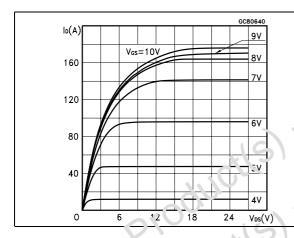
Symbol Parameter Test condictions Min Typ. Max United States							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Symbol	Parameter	Test condictions	Min	Тур.	Max	Unit
V _{SD} ⁽²⁾ Forward on voltage I _{SD} =50A, V _{GS} =0 1.5 V t _{rr} Reverse recovery time Reverse recovery charge Reverse recovery current I _{RRM} Reverse recovery current Reverse recovery current I _{SD} =50A, di/dt = 100A/μs, V _{DD} =30V, Tj=150°C (see Figure 14) 9 A 1. Pulse width limited by safe operating area 2. Pulsed: pulse duration=300μs, duty cycle 1.5%	I _{SD}	Source-drain current				6	Α
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _{SDM} ⁽¹⁾	Source-drain current (pulsed)				24	Α
Tr Q _{rr} Reverse recovery charge Reverse recovery current di/dt = 100A/μs, V _{DD} =30V, Tj=150°C (see Figure 14) 155 η00 μC A 155 η00	V _{SD} ⁽²⁾	Forward on voltage	I _{SD} =50A, V _{GS} =0			1.5	V
 Pulse width limited by safe operating area Pulsed: pulse duration=300µs, duty cycle 1.5% 	Q _{rr}	Reverse recovery current	di/dt = 100A/µs, V _{DD} =30V, Tj=150°C		700 9	4	μC
	1. Pulse w	idth limited by safe operating area pulse duration=300µs, duty cycle 1.5%	(see Figure 14)	,,0	309		5)


Electrical characteristics STP50NE10

2.1 Electrical characteristics (curves)

Figure 1. Safe operating area

lo(A)


Figure 2. Thermal impedance $\delta = 0.5$ $\delta = 0.5$ 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1

K $\delta = 0.5$ 0.2
0.1 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0

Figure 3. Output characterisics

Figure 4. Transfer characteristics

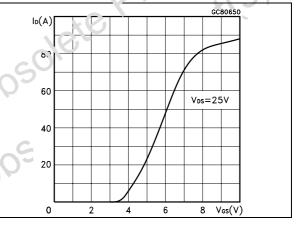
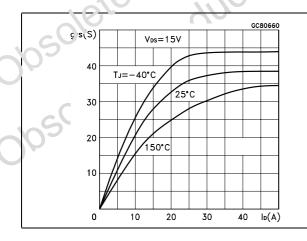
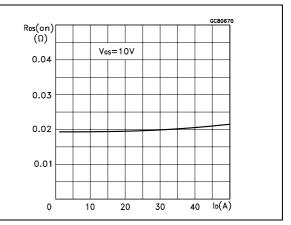




Figure 5. Transconductance

Figure 6. Static drain-source on resistance

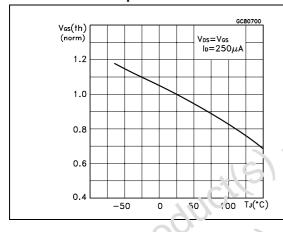
Vgs(V) f=1MHz Vgs=0V V_{DS}=48V I_D=50A 9.6 8 7.2 6 Ciss 2.4

Gate charge vs gate-source voltage Figure 8. Capacitance variations

120 Q₉(nC)

Figure 9. Normalized gate threshold voltage vs temperature

60


90

0

30

'ros(V) 0 10 20 30

Figure 10. Normalized on resistance vs temperature

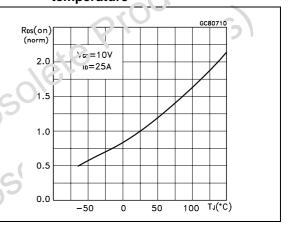
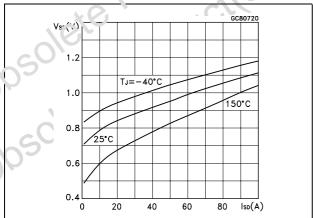



Figure 11. Source dealer diode forward chara ~eristics

Test circuit STP50NE10

3 **Test circuit**

Figure 12. Switching times test circuit for resistive load

Figure 13. Gate charge test circuit

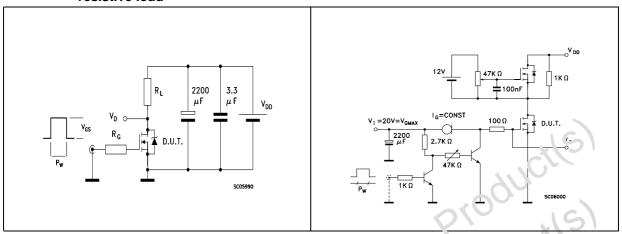


Figure 14. Test circuit for inductive load switching and diode recovery times

Figure 15. Unakaniped Inductive load test circuit

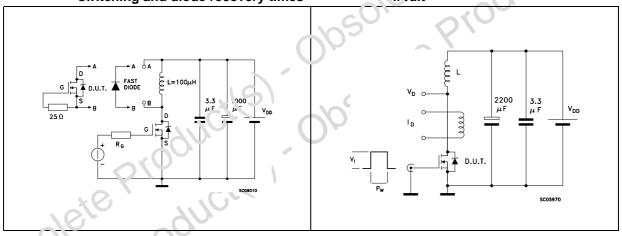
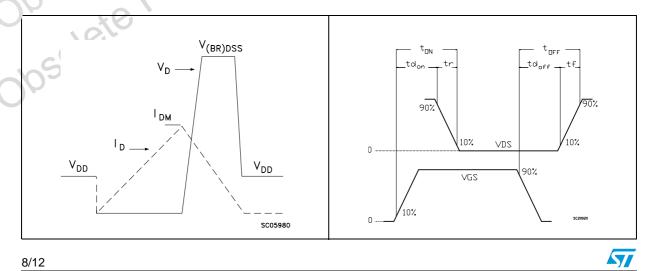
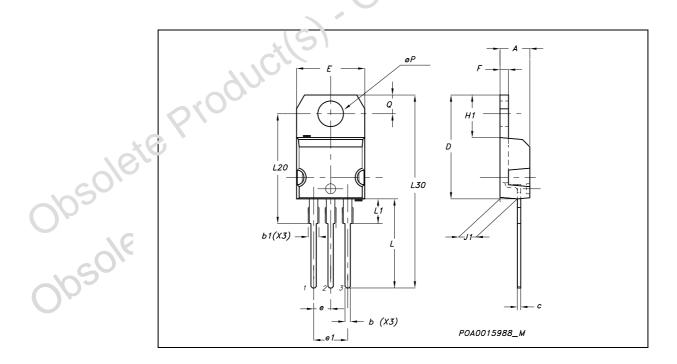



Figure 16. Unclamped inductive waveform

Figure 17. Switching time waveform


4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

Obsolete Product(s) Obsolete Product(s)
Obsolete Product(s) Obsolete Product(s)

TO-220 MECHANICAL DATA

DIM.		mm.			inch	
DIN.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	4.40		4.60	0.173		0.181
b	0.61		0.88	0.024		0.034
b1	1.15		1.70	0.045		0.066
С	0.49		0.70	0.019		0.027
D	15.25		15.75	0.60		0.620
E	10		10.40	0.393		0.409
е	2.40		2.70	0.094	4	0.100
e1	4.95		5.15	0.194	77	0.202
F	1.23		1.32	0.048		0.052
H1	6.20		6.60	0.244	70	0.256
J1	2.40		2.72	0.094		0.107
L	13		14	0.511		0.551
L1	3.50		3.93	0.137		0.154
L20		16.40			0.645	
L30		28.90			1.137	
øΡ	3.75		₹.85	0.147		0.151
Q	2.65		7.95	0.104		0.116

STP50NE10 Revision history

5 Revision history

Table 7. Revision history

Date	Revision	Changes
09-Sep-2004	7	Complete version
10-Aug-2006	8	New template, no content change

Obsolete Producits) Obsolete Producits)
Obsolete Producits) Obsolete Producits)

577

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidia ric s (Sr") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and servings described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property 'ig 't's 's granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warrancy covering the use in any manner whatsoever of such third party products or services or any intellectual property contained the rain.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNES: FCR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF CANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WACTING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WALTANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROFER TY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE VISED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST | roducts with provisions different from the statements and/or technical features set forth in this document shall immediately void any warran'y granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

577