
 Product Guide AIR7101-0101-1

 Rev 1.0 1

Artificial Intelligence Radio Transceiver

The Artificial Intelligence Radio Transceiver (AIR-T) is a high-performance software-defined
radio (SDR) seamlessly integrated with state-of-the-art processing and deep learning inference
hardware. The incorporation of an embedded graphics processing unit (GPU) enables real-time
wideband digital signal processing (DSP) algorithms to be executed in software, without
requiring specialized field programmable gate array (FPGA) firmware development. The GPU is
the most utilized processor for machine learning, therefore the AIR-T significantly reduces the
barrier for engineers to create autonomous signal identification, interference mitigation, and
many other machine learning applications. By granting the deep learning algorithm full control
over the transceiver system, the AIR-T allows for fully autonomous software defined and
cognitive radio.

Out of the box, the AIR-T is a fully functioning SDR that includes numerous examples and open
source APIs. The system includes AirStack, the AIR-T’s complete software package. AirStack
consists of the Ubuntu operating system, drivers, FPGA firmware, and everything required for
AIR-T operation.

Figure 1: AIR-T Images

Document Overview
This document lists the specifications for the Artificial Intelligence Radio Transceiver (AIR-T).
Specifications are subject to change without notice. For the most recent device specifications,
refer to www.deepwavedigital.com.

 Product Guide AIR7101-0101-1

 Rev 1.0 2

Block Diagram

Figure 2: Functional Block Diagram

Processors
The AIR-T enables software defined radio for any signal processing application by utilizing three
classes of tightly coupled processors:

● FPGA for strict real-time operations

● GPU for highly parallel processing and machine learning

● CPU for control, I/O, DSP, and software applications

 Product Guide AIR7101-0101-1

 Rev 1.0 3

General Purpose Processors

The AIR-T leverages the NVIDIA Jetson TX2 System On Module (SOM) as its General Purpose
Processors (GPP). The Jetson TX2 SOM contains two ARM processors (6 cores total), an
NVIDIA Pascal GPU (256 cores), and 8 GBytes of memory. The CPUs and GPU all share a
common pool of memory, which (along with a unified memory architecture) allows for a zero-
copy capability. As illustrated in Figure 3, zero-copy eliminates the host-to-devices (or device-to-
host) memory transfer that is required by SDRs with discrete GPUs, such as an SDR connected
to an external laptop or computer. Because of this, an SDR with a discrete GPU will have
increased latency that is prohibitive for many applications. The AIR-T leverages zero-copy to
remove this extra data transfer to enable a wide-range of SDR applications.

Figure 3: Comparison of a) traditional memory architecture with b) AIR-T unified memory
architecture

For additional details on the NVIDIA Jetson TX2 please see that datasheet here:
http://developer.nvidia.com/embedded/dlc/jetson-tx2-series-modules-data-sheet. Some of the
information from that datasheet is produced below.

Manufacturer NVIDIA Corporation

Model NVIDIA Jetson TX2 (GPU / CPU)

Packaging System on Module (SOM)

GPU Type NVIDIA Pascal™ GPU architecture with 256 NVIDIA CUDA cores

CPU Type ARMv8 (64-bit) heterogeneous multi-processing CPU architecture with
two CPU clusters (6 processor cores) connected by a coherent

 Product Guide AIR7101-0101-1

 Rev 1.0 4

interconnect fabric.

ARM® Cortex® -A57 MPCore (Quad-Core) Processor:
● 2.0 GHz
● L1 Cache: 48KB L1 instruction cache (I-cache) per core, 32KB

L1 data cache (D-cache) per core
● L2 Unified Cache: 2MB

NVIDIA Denver 2 (Dual-Core) Processor:
● 2.0 GHz
● L1 Cache: 128KB L1 instruction cache (I-cache) per core,

64KB L1 data cache (D-cache) per core
● L2 Unified Cache: 2MB

Unified Memory
(GPU/CPU shared)

Capacity: 8 GB
Type: 128-bit (4ch x 32-bit) LPDDR4 Memory
Bus Frequency: 1866 MHz (59.7 GB/s)

Storage Capacity 32GB eMMC 5.1 Flash Storage

Reconfigurable FPGA

The FPGA on the AIR-T comes preloaded with the AirStack firmware to support transmit and
receive functionality. Customers may choose to load custom firmware if needed by their
application. Details regarding the FPGA on the AIR-T are shown below.

Manufacturer Xilinx

Family Artix-7

Model XC7A75T-2FGG676C

LUTs 47,200

DSP48E1 Slices 180

Embedded Block RAM 3.78 kbits

Default Timebase 62.5 MHz or 125 MHz

Flash Memory (non-volatile) 256Mb

 Product Guide AIR7101-0101-1

 Rev 1.0 5

Networking

Ethernet ● 10/100/1000 BASE-T, RJ-45 connector

WLAN ● IEEE 802.11a/b/g/n/ac dual-band 2x2 MIMO
● Maximum transfer rate 866.7Mbps

Bluetooth ● Version 4.1
●

External Display

HDMI 2.0a/b Up to 3840x2160 at 60Hz (4k)

Peripheral Interfaces

NVIDIA Jetson TX2

SATA Version 3.1

SD Card SD 3.0 or SD-XC cards up to 2 TB

USB USB 3.0 Super Speed mode (up to 5Gb/s)
USB 2.0 High Speed mode (up to 480Mb/s), USB On-The-Go

UART See NVIDIA Jetson TX2 datasheet for information

GPIO See NVIDIA Jetson TX2 datasheet for information

SPI See NVIDIA Jetson TX2 datasheet for information

I2C See NVIDIA Jetson TX2 datasheet for information

Audio Input / Output I2S or Digital. See NVIDIA Jetson TX2 datasheet for information

 Product Guide AIR7101-0101-1

 Rev 1.0 6

Xilinx FPGA

JTAG Programmable via JTAG or Digilent USB to JTAG converter

XADC Integrated Analog with Digital Customization for the FPGA

Digital I/O GPIO, SPI

UART USB to UART bridge

Analog Devices 9371

GPIO System monitoring and external attenuator control

Transceiver

Radio Frequency Integrated Circuit

The Radio Frequency Integrated Circuit (RFIC) on the AIR-T is the Analog Devices AD9371.
For additional details on the AD9371 please see that datasheet here:
https://www.analog.com/media/en/technical-documentation/data-sheets/AD9371.pdf

Manufacturer Analog Devices

Model AD9371

Frequency Conversion Type Direct conversion

Receiver Specifications

Number of Channels 2 (LO shared)

Sample Rates ● 125 MSPS
● 62.5 MSPS
● 31.25 MSPS
● 15.625 MSPS

 Product Guide AIR7101-0101-1

 Rev 1.0 7

● 7.8125 MSPS

Maximum Bandwidth 112.5 MHz

Frequency Tuning Range 300 MHz to 6 GHz (no daughter card)

Power Level Control ● Automatic Gain Control (AGC) up to 30 dB attenuation
● Manual gain control 0 to 30 dB attenuation in 0.5 dB

increments

Maximum Input Power ● -15 dBm (no AGC)
● 15 dBm (w/ AGC)

ADC Resolution 16 bits

Built-in Calibrations ● Quadrature Error Correction
● DC offset correction

Local Oscillator Internal (built-in) or external

Auxiliary Channels1 Sniffer, Observation

Transmitter Specification

Transmit Channels 2 (LO shared)

Sample Rates ● 125 MSPS
● 62.5 MSPS
● 31.25 MSPS
● 15.625 MSPS
● 7.8125 MSPS

Maximum Bandwidth 112.5 MHz

Frequency Tuning Range 300 MHz to 6 GHz (no daughter card)

Power Level Control ● Transmit Power Control (TPC) up to 42 dB attenuation
● Manual gain control

Maximum Output Power +6 dBm

DAC Resolution 14 bits

Built-in Calibrations ● Quadrature Error Correction

1 The AIR-T supports up to two transmit and two receive channels simultaneously.

 Product Guide AIR7101-0101-1

 Rev 1.0 8

● LO leakage correction

Local Oscillator Internal (built-in) or external

Internal Reference Clock

Clock distribution part number AD9528

Oscillator Type VCXO

Oscillator Model Crystek Corporation CVHD-950-125M

Oscillator Frequency 125 MHz

Frequency Pull Range ± 20 ppm

External Reference Clock

The AIR-T will phase lock to an external 10 MHz reference signal.

Number of Channels 1

Connector Type ● MCX (Board)
● SMA (Enclosure)

Frequency 10 MHz

Input Impedance 50 Ohms

Input Voltage Rating 3.3V CMOS

Absolute Maximum Voltage 3.45 Volts

Power

Input Voltage Range 5-15 VDC

Typical Standby Power Consumption 9.3 W

Recommended Power Supply 80 W, 12 VDC

 Product Guide AIR7101-0101-1

 Rev 1.0 9

Physical

Form Factor (no enclosure) Mini-ITX

Dimensions (no enclosure) 170 × 170 x 35 mm (6.7" × 6.7" x 1.4")

Weight (no enclosure) 0.35 kg (0.8 lbs)

Proper Handling
The AIR-T is a printed circuit board with many exposed conductors. It is essential that no
conductive material be left near or in contact with the system.

Best practices include using an anti-static mat and other ESD procedures when handling
sensitive electronic equipment, including low humidity and not exposing the radio to liquids.

During the calibration procedure that is run when the radio is initialized, calibration signals may
be emitted from both the TX and RX ports. To ensure that connected equipment is not
damaged, it is recommended to disconnect the AIR-T from any equipment and terminate with
50 Ohms during the radio initialization.

Software
The AIR-T comes preloaded with a full software stack, called AirStack. AirStack includes all the
components necessary to utilize the AIR-T, such as an Ubuntu based operating system, AIR-T
specific device drivers, and the FPGA firmware. The operating system is based off of the
NVIDIA Jetpack and is upgraded periodically. Please check for the latest software at
www.deepwavedigital.com

Application Programming Interfaces
Applications for the AIR-T may be developed using almost any software language, but C/C++
and Python are the primary supported languages. Various Application Programming Interfaces
(APIs) are supported by AirStack and a few of the most common APIs are described below.

 Product Guide AIR7101-0101-1

 Rev 1.0 10

Hardware Control

SoapyAIRT

SoapySDR is the primary API for interfacing with the AIR-T via the SoapyAIRT driver.
SoapySDR is an open-source API and runtime library for interfacing with various SDR devices.
The AirStack environment includes the SoapySDR and the SoapyAIRT driver to enable
communication with the radio interfaces using Python or C++. The Python code below provides
an operational example of how to leverage the SoapyAIRT for SDR applications.

1. #!/usr/bin/env python3
2. from SoapySDR import Device, SOAPY_SDR_RX, SOAPY_SDR_CS16
3. import numpy as np
4. sdr = Device(dict(driver="SoapyAIRT")) # Create AIR-T instance
5. sdr.setSampleRate(SOAPY_SDR_RX, 0, 125e6) # Set sample rate on channel 0
6. sdr.setGainMode(SOAPY_SDR_RX, 0, True) # Use AGC on channel 0
7. sdr.setFrequency(SOAPY_SDR_RX, 0, 2.4e9) # Set tune frequency on channel 0
8. buff = np.empty(2 * 16384, np.int16) # Create memory buffer for data stream

9. stream = sdr.setupStream(SOAPY_SDR_RX,
10. SOAPY_SDR_CS16, [0]) # Setup data stream
11. sdr.activateStream(stream) # Turn on the radio
12. for i in range(10): # Receive 10x16384 windows of signal
13. sr = sdr.readStream(stream, [buff], 16384) # Read 16384 samples
14. rc = sr.ret # Number of samples read or error code

15. assert rc == 16384, 'Error code = %d!' % rc # Make sure no errors
16. s0 = buff.astype(float) / np.power(2.0, 15) # Interleaved signal data bw (-1, 1)
17. s = s0[::2] + 1j*s0[1::2] # Complex signal data
18. # <Insert code here that operates on s>
19. sdr.deactivateStream(stream) # Stop streaming samples
20. sdr.closeStream(stream) # Turn off radio

UHD

A key feature of SoapySDR is its ability to translate to/from other popular SDR APIs, such as
UHD. The SoapyUHD plugin is included with AirStack and enables developers to create
applications using UHD or execute existing UHD-based applications on the AIR-T. This
interface is described in Figure 4.

 Product Guide AIR7101-0101-1

 Rev 1.0 11

Figure 4: UHD Support Overview

Signal Processing

Python Interfaces

Figure 5 illustrates supported Python APIs that can be used to develop signal processing
applications on both the CPU and GPU of the AIR-T. In general, these have been selected
because they have modest overhead compared to native code and are well suited to rapid
prototyping. In addition, C++ interfaces are provided for many control and processing interfaces
to the AIR-T for use in performance-critical applications.

The table below outlines the common data processing APIs that are natively supported by
AirStack, along with the supported GPP for each API. Some of these are included with AirStack,
while some are available via the associated URL.

 Product Guide AIR7101-0101-1

 Rev 1.0 12

Figure 5: Python Software Suite for DSP on the AIR-T

API GPP Description

numpy CPU numpy is one a common data analysis and processing
Python module.
URL: https://numpy.org/

scipy.signal CPU SciPy is a scientific computing library for Python that
contains a signal processing library, scipy.signal.
URL: https://docs.scipy.org/doc/scipy/reference/signal.html

cupy GPU Open-source matrix library accelerated with NVIDIA CUDA
that is semantically compatible with numpy.
URL: https://cupy.chainer.org/

cuSignal GPU Open-source signal processing library accelerated with
NVIDIA CUDA based on scipy.signal.
URL: https://github.com/rapidsai/cusignal

PyCUDA / numba GPU Python access to the full power of NVIDIA’s CUDA API
URL: https://documen.tician.de/pycuda/

Custom CUDA
Kernels

GPU Custom CUDA kernels may be developed and executed on
the AIR-T

GNU Radio

The AIR-T also supports GNU Radio, one of the most widely used open-source toolkits for
signal processing and SDR. Included with AirStack, the toolkit provides modules for the
instantiation of bidirectional data streams with the AIR-T’s transceiver (transmit and receive) and
multiple DSP modules in a single framework. GNU Radio Companion may also be leveraged for
a graphical programming interface, as shown in Figure 6. GNU Radio is written in C++ and has
Python bindings.

Like the majority of SDR applications, most functions in GNU Radio rely on CPU processing.
Since many DSP engineers are already familiar with GNU Radio, two free and open source
modules have been created for AirStack to provide GPU acceleration on the AIR-T from within
GNU Radio. Gr-cuda and gr-wavelearner, along with the primary GNU Radio modules for
sending and receiving samples to and from the AIR-T, are shown in the table below and
included with AirStack.

 Product Guide AIR7101-0101-1

 Rev 1.0 13

gr-cuda A detailed tutorial for incorporating CUDA kernels into GNU Radio.
URL: https://github.com/deepwavedigital/gr-cuda

gr-wavelearner A framework for running both GPU-based FFTs and neural network
inference in GNU Radio.
URL: https://github.com/deepwavedigital/gr-wavelearner

gr-uhd The GNU Radio module for supporting UHD devices.
URL: https://github.com/gnuradio/gnuradio/tree/master/gr-uhd

gr-soapy Vendor neutral set of source/sink blocks for GNU Radio.
URL: https://gitlab.com/librespacefoundation/gr-soapy

Figure 6: GNU Radio Companion GUI executing a CUDA kernel

 Product Guide AIR7101-0101-1

 Rev 1.0 14

Deep Learning
The workflow for creating a deep learning application for the AIR-T consists of three phases:
training, optimization, and deployment. These steps are illustrated in Figure 7 and covered in
the sections below.

AirPack is an add-on software package (not included with the AIR-T) that provides source code
for the complete training-to-deployment workflow described in this section. More information
about AirPack may be found here: https://deepwavedigital.com/airpack/.

Figure 7: Deep learning training-to-deployment workflow for the AIR-T

Training Frameworks

The primary inference library used on the AIR-T is NVIDIA’s TensorRT. TensorRT allows for
optimized interference to run on the AIR-T’s GPU. TensorRT is compatible with models trained
using a wide variety of frameworks as shown below.

Deep Learning
Framework Description

TensorRT
Support

Programming
Languages

TensorFlow Google’s deep learning framework UFF, Python, C++,

 Product Guide AIR7101-0101-1

 Rev 1.0 15

URL: www.tensorflow.org/ ONXX Java

PyTorch Open source deep learning framework
maintained by Facebook
URL: www.pytorch.org/

ONNX Python, C++

MATLAB MATLAB has a Statistics and Machine
Learning Toolbox and a Deep Learning
Toolbox
URL:www.mathworks.com/solutions/deep-
learning.html

ONNX MATLAB

CNTK Microsoft’s open source Cognitive Toolkit.
URL: docs.microsoft.com/cognitive-toolkit/

ONNX Python, C#, C++

When training a neural network for execution on the AIR-T, make sure that the layers being
used are supported by your version of TensorRT. To determine what version of TensorRT is
installed on your AIR-T, open a terminal and run:

$ dpkg -l | grep TensorRT

The supported layers may be found in the TensorRT SDK Documentation under the TensorRT
Support Matrix section.

Optimization Frameworks

Once a model is trained (and saved in the file formats listed in the table above), it must be
optimized to run efficiently on the AIR-T. The primary function of the AIR-T is to be an edge-
compute inference engine for the real-time execution of deep learning applications. This section
discusses the supported framework(s) for optimizing a DNN for deployment on the AIR-T.

TensorRT

The primary method for executing a deep learning algorithm on the AIR-T’s GPU is to use
NVIDIA’s TensorRT inference accelerator software. This software will convert a trained neural
network into a series of GPU operations, known as an inference engine. The engine can then
be saved and used for repeated inference operations.

Deployment on the AIR-T

The procedure for deploying a trained neural network is outlined in Figure 7, where a deep
neural network (DNN) is used. After the neural network has been optimized, the resulting
inference engine is loaded into a user’s inference application using either the C++ or Python

 Product Guide AIR7101-0101-1

 Rev 1.0 16

TensorRT API. The user’s inference application is responsible for passing signals from the radio
to the inference engine and reading back the results of inference. If using GNU Radio, the GR-
Wavelearner library provides a mechanism for building an inference application within a GNU
Radio flowgraph.

Legal
The Product is sold as test equipment. If you choose to use your Product to transmit using an
antenna, it is your responsibility to make sure that you are in compliance with all laws for the
country, frequency, and power levels in which the device is used. Additionally, some countries
regulate reception in certain frequency bands. Again, it is the responsibility of the user to
maintain compliance with all local laws and regulations. Deepwave Digital is not responsible for
any lawsuits, fines, or damages that violate these laws or policies.

