Hex Schmitt Inverter 74VHC14 #### **General Description** The VHC14 is an advanced high speed CMOS Hex Schmitt Inverter fabricated with silicon gate CMOS technology. It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation. Pin configuration and function are the same as the VHC04 but the inputs have hysteresis between the positive–going and negative–going input thresholds, which are capable of transforming slowly changing input signals into sharply defined, jitter–free output signals, thus providing greater noise margin than conventional inverters. An input protection circuit ensures that 0 V to 5.5 V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5 V to 3 V systems and two supply systems such as battery back up. This circuit prevents device destruction due to mismatched supply and input voltages. #### **Features** - High Speed: $t_{PD} = 5.5 \text{ ns (Typ.)}$ at $V_{CC} = 5 \text{ V}$ - Low Power Dissipation: $I_{CC} = 2 \mu A$ (Max.) at $T_A = 25^{\circ}C$ - High Noise Immunity: $V_{NIH} = V_{NIL} = 28\% V_{CC}$ (Min.) - Power Down Protection is Provided on All Inputs - Low Noise: V_{OLP} = 0.8 V (Max.) - Pin and Function Compatible with 74HC14 - Pb-Free, Halogen Free/BFR Free and RoHS Compliant #### **Logic Symbol** Figure 1. Logic Symbol # TRUTH TABLE | A | 0 | |---|---| | L | Н | | Н | L | TSSOP-14 WB CASE 948G #### **MARKING DIAGRAM** XXXXX = Specific Device Code A = Assembly Location L = Wafer Lot Y = Year W = Work Week ■ Pb-Free Package (Note: Microdot may be in either location) #### **CONNECTION DIAGRAM** #### **PIN DESCRIPTION** | Pin Names | Description | |----------------|-------------| | A _n | Inputs | | Ō _n | Outputs | ## ORDERING INFORMATION See detailed ordering and shipping information on page 4 of this data sheet. #### **74VHC14** #### **MAXIMUM RATINGS** | Symbol | Parameter | Value | Unit | |------------------|---|---|------| | V _{CC} | DC Supply Voltage | -0.5 to +6.5 | V | | V _{IN} | DC Input Voltage | -0.5 to +6.5 | V | | V _{OUT} | DC Output Voltage Active Mode (High or Low State) Tristate Mode (Note 1) Power-Off Mode (V _{CC} = 0 V) | -0.5 to V _{CC} + 0.5
-0.5 to +6.5
-0.5 to +6.5 | V | | I _{IN} | DC Input Current, Per Pin | ±20 | mA | | I _{OUT} | DC Output Current, Per Pin | ±25 | mA | | I _{CC} | DC Supply Current, V _{CC} and GND Pins | ±50 | mA | | I _{IK} | Input Clamp Current | -20 | mA | | lok | Output Clamp Current | ±20 | mA | | T _{STG} | Storage Temperature Range | -65 to +150 | °C | | TL | Lead Temperature, 1 mm from Case for 10 s | 260 | °C | | TJ | Junction Temperature Under Bias | +150 | °C | | θ_{JA} | Thermal Resistance (Note 2) | 150 | °C/W | | P_{D} | Power Dissipation in Still Air at 25°C | 833 | mW | | V _{ESD} | ESD Withstand Voltage (Note 3) Human Body Model Charged Device Model | 2000
N/A | V | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Applicable to devices with outputs that may be tri–stated. - 2. Measured with minimum pad spacing on an FR4 board, using 76 mm-by-114 mm, 2-ounce copper trace no air flow per JESD51-7. - 3. HBM tested to EIA / JESD22-A114-A. CDM tested to JESD22-C101-A. JEDEC recommends that ESD qualification to EIA/JESD22-A115A (Machine Model) be discontinued. #### RECOMMENDED OPERATING CONDITIONS | Symbol | Parameter | Min | Max | Unit | |---------------------------------|---|-------------|-------------------------------|------| | V _{CC} | DC Supply Voltage | 2.0 | 5.5 | V | | V _{IN} | DC Input Voltage (Note 4) | 0 | 5.5 | V | | V _{OUT} | DC Output Voltage (Note 4) Active Mode (High or Low State) Tristate Mode Power–Off Mode (V _{CC} = 0 V) | 0
0
0 | V _{CC}
5.5
5.5 | V | | T _A | Operating Temperature | -40 | +85 | °C | | t _r , t _f | Input Rise or Fall Rate | 0 | No Limit | ns/V | Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. 4. Unused inputs must be held HIĞH or LOW. They may not float. # 74VHC14 # DC ELECTRICAL CHARACTERISTICS | | | | | | T _A = 25°C | | | $T_A = -40^\circ$ | C to +85°C | | |-----------------|-----------------------------|---------------------|---------------------------------------|--------------------------|-----------------------|-----|------|-------------------|------------|------| | Symbol | Parameter | V _{CC} (V) | Cor | nditions | Min | Тур | Max | Min | Max | Unit | | V_{P} | Positive Threshold | 3.0 | | | - | - | 2.20 | _ | 2.20 | V | | | Voltage | 4.5 | | | _ | - | 3.15 | _ | 3.15 | | | | | 5.5 | | | _ | - | 3.85 | _ | 3.85 | | | V _N | Negative Threshold | 3.0 | | | 0.90 | - | - | 0.90 | _ | V | | | Voltage | 4.5 | | | 1.35 | - | - | 1.35 | _ | | | | | 5.5 | | | 1.65 | - | - | 1.65 | _ | | | V _H | Hysteresis Voltage | 3.0 | | | 0.30 | - | 1.20 | 0.30 | 1.20 | V | | | | 4.5 | | | 0.40 | - | 1.40 | 0.40 | 1.40 | | | | | 5.5 | | | 0.50 | - | 1.60 | 0.50 | 1.60 | | | V _{OH} | HIGH Level Output | 2.0 | 2.0 V _{IN} = V _{IL} | $I_{OH} = -50 \mu A$ | 1.9 | 2.0 | - | 1.9 | - | V | | | Voltage | 3.0 | | | 2.9 | 3.0 | - | 2.9 | _ | | | | | 4.5 | | | 4.4 | 4.5 | - | 4.4 | - | | | | | 3.0 | | $I_{OH} = -4 \text{ mA}$ | 2.58 | - | - | 2.48 | _ | | | | | 4.5 | | $I_{OH} = -8 \text{ mA}$ | 3.94 | - | - | 3.80 | - | | | V _{OL} | LOW Level Output | 2.0 | $V_{IN} = V_{IH}$ | I _{OL} = 50 μA | - | 0.0 | 0.1 | - | 0.1 | V | | | Voltage | 3.0 | | | _ | 0.0 | 0.1 | _ | 0.1 | | | | | 4.5 | | | _ | 0.0 | 0.1 | - | 0.1 | | | | | 3.0 | | I _{OL} = 4 mA | _ | - | 0.36 | - | 0.44 | | | | | 4.5 | | I _{OL} = 8 mA | - | - | 0.36 | _ | 0.44 | | | I _{IN} | Input Leakage
Current | 0–5.5 | V _{IN} = 5.5 V | or GND | - | - | ±0.1 | - | ±1.0 | μΑ | | I _{CC} | Quiescent Supply
Current | 5.5 | $V_{IN} = V_{CC}$ | or GND | _ | _ | 2.0 | - | 20.0 | μΑ | # **NOISE CHARACTERISTICS** | | | | | T _A = 25°C | | | |------------------|--|-----|------------------------|-----------------------|-----|------| | Symbol | mbol Parameter | | Conditions | Тур | Max | Unit | | V _{OLP} | Quiet Output Maximum Dynamic V _{OL} | 5.0 | C _L = 50 pF | 0.4 | 0.8 | V | | V _{OLV} | Quiet Output Minimum Dynamic V _{OL} | 5.0 | C _L = 50 pF | -0.4 | 0.8 | V | | V_{IHD} | Minimum HIGH Level Dynamic Input Voltage | 5.0 | C _L = 50 pF | - | 3.5 | V | | V _{ILD} | Maximum LOW Level Dynamic Input Voltage | 5.0 | C _L = 50 pF | - | 1.5 | V | ^{5.} Parameter guaranteed by design. # **AC ELECTRICAL CHARACTERISTICS** | | | | | $T_A = 25^{\circ}C$ $T_A = -40^{\circ}C \text{ to } +85^{\circ}$ | | | C to +85°C | | | |--------------------|-------------------------------|---------------------|------------------------|--|------|------|------------|------|------| | Symbol | Parameter | V _{CC} (V) | Conditions | Min | Тур | Max | Min | Max | Unit | | t _{PLH} , | Propagation Delay | 3.3 ±0.3 | C _L = 15 pF | - | 8.3 | 12.8 | 1.0 | 15.0 | ns | | t _{PHL} | Time | | C _L = 50 pF | - | 10.8 | 16.3 | 1.0 | 18.5 | | | | | 5.0 ±0.5 | C _L = 15 pF | - | 5.5 | 8.6 | 1.0 | 10.0 | ns | | | | | C _L = 50 pF | - | 7.0 | 10.6 | 1.0 | 12.0 | | | C _{IN} | Input Capacitance | | V _{CC} = Open | - | 4 | 10 | - | 10 | pF | | C _{PD} | Power Dissipation Capacitance | | (Note 6) | - | 21 | - | - | - | pF | ^{6.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC} (Opr) = C_{PD} × V_{CC} × f_{IN} + I_{CC} / 6 (per Gate) # 74VHC14 # **ORDERING INFORMATION** | Device Order Number | Top Marking | Package Type | Shipping [†] | |---------------------|-------------|---------------------------------------|-----------------------| | 74VHC14MTCX | VHC
14 | TSSOP-14 WB
(Pb-Free, Halide Free) | 2,500 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. **DATE 17 FEB 2016** - NOTES. 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD - FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. DIMENSION B DOES NOT INCLUDE - INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL - INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR DECEDEDIC ONLY - REFERENCE ONLY. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. | | MILLIN | IETERS | INC | HES | | |-----|----------|--------|-----------|-------|--| | DIM | MIN MAX | | MIN | MAX | | | Α | 4.90 | 5.10 | 0.193 | 0.200 | | | В | 4.30 | 4.50 | 0.169 | 0.177 | | | С | | 1.20 | | 0.047 | | | D | 0.05 | 0.15 | 0.002 | 0.006 | | | F | 0.50 | 0.75 | 0.020 | 0.030 | | | G | 0.65 | BSC | 0.026 BSC | | | | Н | 0.50 | 0.60 | 0.020 | 0.024 | | | J | 0.09 | 0.20 | 0.004 | 0.008 | | | J1 | 0.09 | 0.16 | 0.004 | 0.006 | | | K | 0.19 | 0.30 | 0.007 | 0.012 | | | K1 | 0.19 | 0.25 | 0.007 | 0.010 | | | L | 6.40 BSC | | 0.252 | BSC | | | М | 0° | 8 ° | 0 ° | 8 ° | | ### **GENERIC MARKING DIAGRAM*** = Assembly Location = Wafer Lot Υ = Year W = Work Week = Pb-Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking. | SOLDERI | NG FOOTPRINT | |-------------|-------------------------| | < | 7.06 | | 1 | | | | | | | | | | | | | 0.65
PITCH | | 14X
0.36 | | | 1.20 | DIMENSIONS: MILLIMETERS | | DOCUMENT NUMBER: | 98ASH70246A | Electronic versions are uncontrolled except when accessed directly from the Document Repositor
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | | |------------------|-------------|---|-------------|--|--| | DESCRIPTION: | TSSOP-14 WB | | PAGE 1 OF 1 | | | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others. onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase #### ADDITIONAL INFORMATION **TECHNICAL PUBLICATIONS:** $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales