

Sample &

Buy

DRV8832-Q1

Reference

E Design

SLVSBW9C - APRIL 2013 - REVISED DECEMBER 2015

DRV8832-Q1 Low-Voltage Motor Driver IC

Technical

Documents

Features 1

- **Qualified for Automotive Applications**
- AEC-Q100 Qualified With the Following Results:
 - Device Temperature Grade 1: -40°C to 125°C Ambient Operating Temperature Range
 - Device HBM ESD Classification Level H2
 - Device CDM ESD Classification Level C4B
- H-Bridge Voltage-Controlled Motor Driver
 - Drives DC Motor, One Winding of a Stepper Motor, or Other Actuators/Loads
 - Efficient PWM Voltage Control for Constant Motor Speed With Varying Supply Voltages
 - Low MOSFET ON-Resistance: HS + LS 450 mΩ
- 1-A Maximum DC/RMS or Peak Drive Current
- 2.75-V to 6.8-V Operating Supply Voltage Range
- 300-nA (Typical) Sleep Mode Current
- Reference Voltage Output
- **Current Limit Circuit**
- Fault Output
- Thermally Enhanced Surface Mount Packages

Applications 2

- Battery-Powered:
 - Printers
 - Toys
 - Robotics
 - Cameras
 - Phones
- Small Actuators, Pumps, and so forth

3 Description

Tools &

Software

The DRV8832-Q1 device provides an integrated motor driver solution for battery-powered toys, printers, and other low-voltage or battery-powered motion control applications. The device has one Hbridge driver, and can drive one DC motor or one winding of a stepper motor, as well as other loads like solenoids. The output driver block consists of Nchannel and P-channel power MOSFETs configured as an H-bridge to drive the motor winding.

Support &

Community

29

Provided with sufficient PCB heatsinking, the DRV8832-Q1 can supply up to 1-A of DC/RMS or peak output current. It operates on power supply voltages from 2.75 V to 6.8 V.

To maintain constant motor speed over varying battery voltages while maintaining long battery life, a PWM voltage regulation method is provided. An input pin allows programming of the regulated voltage. A built-in voltage reference output is also provided.

Internal protection functions are provided for over current protection. short-circuit protection, undervoltage lockout. and overtemperature protection.

The DRV8832-Q1 also provides a current limit function to regulate the motor current during conditions like motor startup or stall, as well as a fault output pin to signal a host processor of a fault condition.

The DRV8832-Q1 is available in tiny 3-mm x 3-mm 10-pin MSOP package with PowerPAD™ (Ecofriendly: RoHS & no Sb/Br).

Device Information⁽¹⁾

		=
PART NUMBER	PACKAGE	BODY SIZE (NOM)
DRV8832-Q1	MSOP-PowerPAD (10)	3.00 mm × 3.00 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Schematic

Table of Contents

1	Feat	tures 1
2	Арр	lications 1
3	Des	cription 1
4	Rev	ision History 2
5	Pin	Configuration and Functions 3
6	Spe	cifications 4
	6.1	Absolute Maximum Ratings 4
	6.2	ESD Ratings 4
	6.3	Recommended Operating Conditions 4
	6.4	Thermal Information 4
	6.5	Electrical Characteristics5
	6.6	Typical Characteristics 6
7	Deta	ailed Description7
	7.1	Overview
	7.2	Functional Block Diagram 7
	7.3	Feature Description
	7.4	Device Functional Modes 11

~	A	Reation and Incolonies to the s	40
8		lication and Implementation	
	8.1	Application Information	
	8.2	Typical Application	12
9	Pow	er Supply Recommendations	. 16
	9.1	Power Supervisor	16
	9.2	Bulk Capacitance	16
10	Laye	out	. 17
	10.1	Layout Guidelines	17
	10.2	Layout Example	17
	10.3	Thermal Considerations	17
11	Dev	ice and Documentation Support	. 19
	11.1	Documentation Support	19
	11.2	Community Resources	19
	11.3	Trademarks	19
	11.4	Electrostatic Discharge Caution	19
	11.5	Glossary	19
12	Mec	hanical, Packaging, and Orderable	
		rmation	. 19

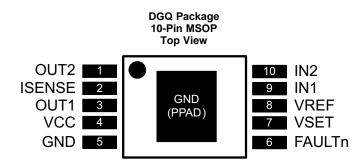
4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision B (January 2014) to Revision C

Cha	anges from Revision A (August 2013) to Revision B	Page
	Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section	1 4

•	Changed Bridge Control section	. 8
•	Changed Current Limit section	10
•	Changed Thermal Shutdown (TSD) section	10
•	Added Power Supervisor section	16


XAS STRUMENTS

www.ti.com

Page

5 Pin Configuration and Functions

Pin Functions

PIN		I/O ⁽¹⁾	DECODIDION	EXTERNAL COMPONENTS	
NAME NO.		1/0\''	DESCRIPTION	OR CONNECTIONS	
GND	5	_	Device ground		
FAULTn	6	OD	Fault output	Open-drain output driven low if fault condition present	
IN1	9	I	Bridge A input 1	Logic high sets OUT1 high	
IN2	10	I	Bridge A input 2	Logic high sets OUT2 high	
ISENSE	2	IO	Current sense resistor	Connect current sense resistor to GND. Resistor value sets current limit level.	
OUT1	3	0	Bridge output 1	Connect to motor winding	
OUT2	1	0	Bridge output 2	Connect to motor winding	
VCC	4	_	Device and motor supply	Bypass to GND with a 0.1-µF (minimum) ceramic capacitor.	
VREF	8	0	Reference voltage output	Reference voltage output	
VSET	7	I	Voltage set input	Input voltage sets output regulation voltage	

(1) Directions: I = input, O = output, OZ = tri-state output, OD = open-drain output, IO = input/output

TEXAS INSTRUMENTS

www.ti.com

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)(2)

		MIN	MAX	UNIT
VCC	Power supply voltage	-0.3	7	V
	Input pin voltage	-0.5	7	V
	Peak motor drive output current ⁽³⁾	Internall	y limited	А
	Continuous motor drive output current ⁽³⁾	-1	1	А
	Continuous total power dissipation	See Themra	al Information	
TJ	Operating virtual junction temperature	-40	150	°C
T _{stg}	Storage temperature	-60	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to network ground terminal.

(3) Power dissipation and thermal limits must be observed.

6.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±4000	M
V _(ESD)	discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1500	v

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
V _{CC}	Motor power supply voltage	2.75	6.8	V
I _{OUT}	Continuous or peak H-bridge output current ⁽¹⁾	0	1	А

(1) Power dissipation and thermal limits must be observed.

6.4 Thermal Information

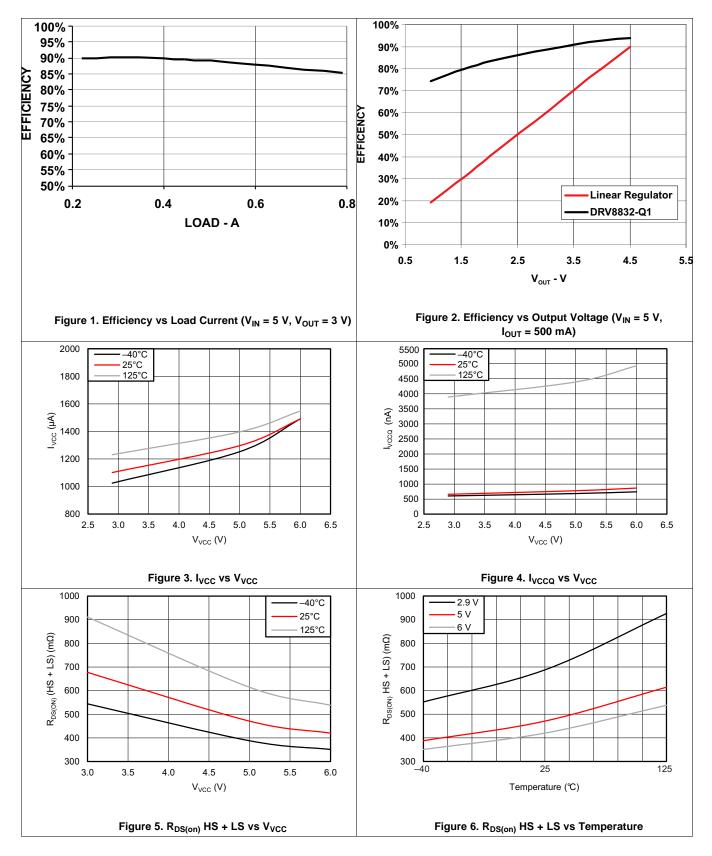
		DRV8832-Q1	
	THERMAL METRIC ⁽¹⁾	DGQ (MSOP)	UNIT
		10 PINS	
R_{\thetaJA}	Junction-to-ambient thermal resistance	69.3	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	63.5	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	51.6	°C/W
Ψ _{JT}	Junction-to-top characterization parameter	1.5	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	23.2	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	9.5	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

 V_{CC} = 2.75 V to 6.8 V, T_{A} = -40°C to 125°C (unless otherwise noted)

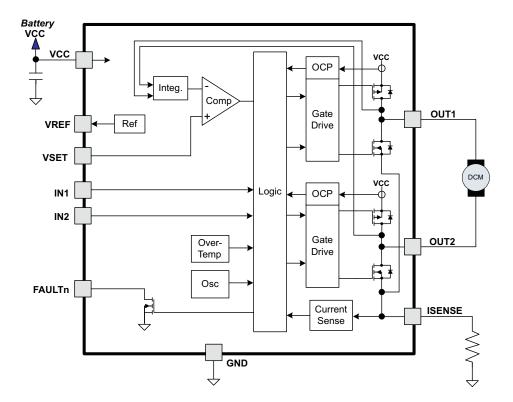
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER S	SUPPLIES					
I _{VCC}	VCC operating supply current	$V_{CC} = 5 V$		1.4	2	mA
IVCCQ	VCC sleep mode supply current	V _{CC} = 5 V, T _A = 25°C		0.3	1	μA
V	VCC undervoltage lockout	V _{CC} rising		2.575	2.75	v
V _{UVLO}	voltage	V _{CC} falling		2.47		V
LOGIC-LE	EVEL INPUTS					
V _{IL}	Input low voltage			0	.25 x VCC	V
V _{IH}	Input high voltage		0.5 x VCC			V
V _{HYS}	Input hysteresis			$0.08 \times V_{CC}$		
I _{IL}	Input low current	$V_{IN} = 0$	-10		10	μA
I _{IH}	Input high current	V _{IN} = 3.3 V			50	μA
LOGIC-LE	EVEL OUTPUTS (FAULTn)				· ·	
V _{OL}	Output low voltage	$V_{CC} = 5 \text{ V}, \text{ I}_{OL} = 4 \text{ mA}^{(1)}$		0.5		V
H-BRIDGE	E FETS					
D	HS FET on resistance	$V_{CC} = 5 \text{ V}, \text{ I}_{O} = 0.8 \text{ A}, \text{ T}_{J} = 125^{\circ}\text{C}$		340	450	mΩ
R _{DS(ON)}		$V_{CC} = 5 \text{ V}, \text{ I}_{O} = 0.8 \text{ A}, \text{ T}_{J} = 25^{\circ}\text{C}$		250		
Р	LS FET on resistance	$V_{CC} = 5 \text{ V}, \text{ I}_{O} = 0.8 \text{ A}, \text{ T}_{J} = 125^{\circ}\text{C}$		270	360	mΩ
R _{DS(ON)}		$V_{CC} = 5 \text{ V}, \text{ I}_{O} = 0.8 \text{ A}, \text{ T}_{J} = 25^{\circ}\text{C}$		200		
I _{OFF}	Off-state leakage current		-20		20	μA
MOTOR D	PRIVER					
t _R	Rise time	$V_{CC} = 3 V$, load = 4 Ω	50		300	ns
t _F	Fall time	$V_{CC} = 3 V$, load = 4 Ω	50		300	ns
f _{SW}	Internal PWM frequency			44.5		kHz
PROTECT	TION CIRCUITS					
I _{OCP}	Overcurrent protection trip level		1.3		3	А
t _{OCP}	OCP deglitch time			2		μs
T _{TSD}	Thermal shutdown temperature	Die temperature ⁽¹⁾	150	160	180	°C
VOLTAGE	CONTROL					
V _{REF}	Reference output voltage		1.235	1.285	1.335	V
ΔV_{LINE}	Line regulation	$V_{CC} = 3.3 \text{ V to 6 V}, V_{OUT} = 3 \text{ V}^{(1)}$ $I_{OUT} = 500 \text{ mA}$		±1%		
ΔV_{LOAD}	Load regulation	$V_{CC} = 5 \text{ V}, V_{OUT} = 3 \text{ V}$ $I_{OUT} = 200 \text{ mA to } 800 \text{ mA}^{(1)}$		±1%		
CURRENT						
V _{ILIM}	Current limit sense voltage		160	200	240	mV
t	Current limit fault deglitch time			275		ms
t _{ILIM}						


(1) Not production tested.

DRV8832-Q1 SLVSBW9C – APRIL 2013– REVISED DECEMBER 2015

www.ti.com

6.6 Typical Characteristics


7 Detailed Description

7.1 Overview

The DRV8832-Q1 is an integrated motor driver solution used for brushed motor control. The device integrates one H-bridge, current regulation circuitry, and a PWM voltage regulation method.

Using the PWM voltage regulation allows the motor to maintain the desired speed as VCC changes. Battery operation is an example of using this feature. When the battery is new or fully charged VCC will be higher than when the battery is old or partially discharged. The speed of the motor will vary based on the voltage of the battery. By setting the desired voltage across the motor at a lower voltage, a fully charged battery will use less power and spin the motor at the same speed as a battery that has been partially discharged.

7.2 Functional Block Diagram

DRV8832-Q1 SLVSBW9C – APRIL 2013–REVISED DECEMBER 2015

7.3 Feature Description

7.3.1 PWM Motor Driver

The DRV8832-Q1 contains an H-bridge motor driver with PWM voltage-control circuitry with current limit circuitry. See Figure 7 for a block diagram of the motor control circuitry.

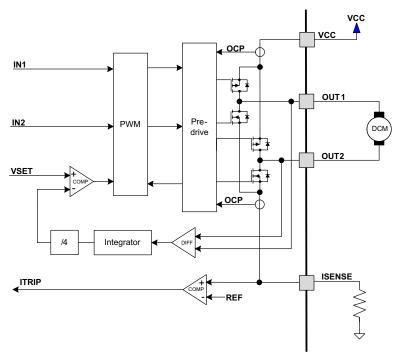


Figure 7. Motor Control Circuitry

7.3.2 Bridge Control

The IN1 and IN2 control pins enable the H-bridge outputs. The following table shows the logic:

IN1	IN2	OUT1	OUT2	Function	
0	0	Z	Z	Sleep/coast	
0	1	L	н	Reverse	
1	0	н	L	Forward	
1	1	Н	н	Brake	

Table	1. F	I-Bridg	ge Logic

When both bits are zero, the output drivers are disabled and the device is placed into a low-power sleep state. The current limit fault condition (if present) is also cleared. Note that when transitioning from either brake or sleep mode to forward or reverse, the voltage control PWM starts at zero duty cycle. The duty cycle slowly ramps up to the commanded voltage. This can take up to 12 ms to go from sleep to 100% duty cycle. Because of this, high-speed PWM signals cannot be applied to the IN1 and IN2 pins. To control motor speed, use the VSET pin as described in the following paragraph.

Because of the sleep mode functionality described previously, when applying an external PWM to the DRV8832-Q1, hold one input logic high while applying a PWM signal to the other. If the logic input is held low instead, then the device will cycle in and out of sleep mode, causing the FAULTn pin to pulse low on every sleep mode exit.

7.3.3 Voltage Regulation

The DRV8832-Q1 provides the ability to regulate the voltage applied to the motor winding. This feature allows constant motor speed to be maintained even when operating from a varying supply voltage such as a discharging battery.

The DRV8832-Q1 uses a pulse-width modulation (PWM) technique instead of a linear circuit to minimize current consumption and maximize battery life.

The circuit monitors the voltage difference between the output pins and integrates it, to get an average DC voltage value. This voltage is divided by 4 and compared to the VSET pin voltage. If the averaged output voltage (divided by 4) is lower than VSET, the duty cycle of the PWM output is increased; if the averaged output voltage (divided by 4) is higher than VSET, the duty cycle is decreased.

During PWM regulation, the H-bridge is enabled to drive current through the motor winding during the PWM on time. This is shown in Figure 8 as case 1. The current flow direction shown indicates the state when IN1 is high and IN2 is low.

Note that if the programmed output voltage is greater than the supply voltage, the device will operate at 100% duty cycle and the voltage regulation feature will be disabled. In this mode the device behaves as a conventional H-bridge driver.

During the PWM off time, winding current is re-circulated by enabling both of the high-side FETs in the bridge. This is shown as case 2 in Figure 8.

Figure 8. Voltage Regulation

7.3.4 Reference Output

The DRV8832-Q1 includes a reference voltage output that can be used to set the motor voltage. Typically for a constant-speed application, VSET is driven from VREF through a resistor divider to provide a voltage equal to 1/4 the desired motor drive voltage.

For example, if VREF is connected directly to VSET, the voltage will be regulated at 5.14 V. If the desired motor voltage is 3 V, VREF should be 0.75 V. This can be obtained with a voltage divider using 53 k Ω from VREF to VSET, and 75 k Ω from VSET to GND.

DRV8832-Q1

SLVSBW9C - APRIL 2013 - REVISED DECEMBER 2015

DRV8832-Q1 SLVSBW9C – APRIL 2013– REVISED DECEMBER 2015

A current limit circuit is provided to protect the system in the event of an overcurrent condition, such as what would be encountered if driving a DC motor at start-up or with an abnormal mechanical load (stall condition).

The motor current is sensed by monitoring the voltage across an external sense resistor. When the voltage exceeds a reference voltage of 200 mV for more than approximately 3 μ s, the PWM duty cycle is reduced to limit the current through the motor to this value. This current limit allows for starting the motor while controlling the current.

If the current limit condition persists for some time, it is likely that a fault condition has been encountered, such as the motor being run into a stop or a stalled condition. An overcurrent event must persist for approximately 275 ms before the fault is registered. After approximately 275 ms, a fault signaled to the host by driving the FAULTn signal low. Operation of the motor driver will continue.

The current limit fault condition is self-clearing and will be released when the abnormal load (stall condition) is removed.

The resistor used to set the current limit must be less than 1 Ω . Its value may be calculated as follows:

$$R_{\rm ISENSE} = \frac{200 \ mV}{I_{\rm LIMIT}}$$

where

- R_{ISENSE} is the current sense resistor value
- I_{LIMIT} is the desired current limit (in mA)

If the current limit feature is not needed, the ISENSE pin may be directly connected to ground.

7.3.6 Protection Circuits

The DRV8832-Q1 is fully protected against undervoltage, overcurrent and overtemperature events.

7.3.6.1 Overcurrent Protection (OCP)

An analog current limit circuit on each FET limits the current through the FET by removing the gate drive. If this analog current limit persists for longer than the OCP time, all FETs in the H-bridge will be disabled, and the FAULTn signal will be driven low. The device will remain disabled until VCC is removed and re-applied.

Overcurrent conditions are sensed independently on both high and low side devices. A short to ground, supply, or across the motor winding will all result in an overcurrent shutdown. Note that OCP is independent of the current limit function, which is typically set to engage at a lower current level; the OCP function is intended to prevent damage to the device under abnormal (for example, short circuit) conditions.

7.3.6.2 Thermal Shutdown (TSD)

If the die temperature exceeds safe limits, all FETs in the H-bridge will be disabled and the FAULTn signal will be driven low. Once the die temperature has fallen to a safe level operation will automatically resume.

7.3.6.3 Undervoltage Lockout (UVLO)

If at any time the voltage on the VCC pins falls below the undervoltage lockout threshold voltage, all circuitry in the device will be disabled, the FAULTn signal will be driven low, and internal logic will be reset. Operation will resume when VCC rises above the UVLO threshold.

FAULT	CONDITION	ERROR REPORT	H-BRIDGE	INTERNAL CIRCUITS	RECOVERY
VCC undervoltage (UVLO)	VCC < V _{UVLO}	FAULTn	Disabled	Disabled	VCC > V _{UVLO}
Overcurrent (OCP)	$I_{OUT} > I_{OCP}$	FAULT n	Disabled	Operating	Power cycle VCC
Thermal shutdown (TSD)	$T_J > T_{TSD}$	FAULTn	Disabled	Operating	$T_J > T_{TSD} - T_{HYS}$

Table 2. Device Protection

(1)

7.4 Device Functional Modes

The DRV8832-Q1 is active when either IN1 or IN2 are set to a logic high. Sleep mode is entered when both IN1 and IN2 are set to a logic low. When in sleep mode, the H-bridge FETs are disabled (Hi-Z).

Table 3. Modes of Operation

FAULT	CONDITION	H-BRIDGE	INTERNAL CIRCUITS
Operating	IN1 or IN2 high	Operating	Operating
Sleep mode	IN1 or IN2 low	Disabled	Diabled
Fault encountered	Any fault condition met	Disabled	See Table 2

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The DRV8832-Q1 is used in brushed DC applications to provide a constant motor speed over varying voltages. The following design procedure can be used to configure the DRV8832 for a system with a VCC variance of 4V to 6V.

8.2 Typical Application

Figure 9 is a common application of the DRV8832-Q1.

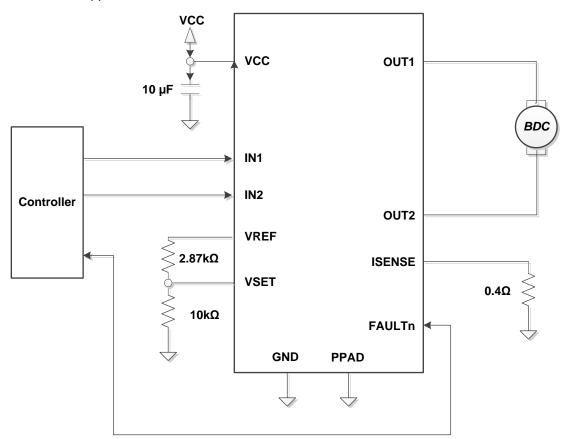


Figure 9. Motor Control Circuitry

Typical Application (continued)

8.2.1 Design Requirements

Table 4 lists the design parameters of the DRV8832-Q1.

-			
DESIGN PARAMETER	REFERENCE	EXAMPLE VALUE	
Motor voltage	V _{CC}	5 V	
Motor RMS current	I _{RMS}	0.3 A	
Motor start-up	I _{START}	1.3 A	
Motor current trip point	I _{LIMIT}	0.9 A	

Table 4. Design Parameters

8.2.2 Detailed Design Procedure

8.2.2.1 Motor Voltage

The motor voltage to use will depend on the ratings of the motor selected and the desired RPM. A higher voltage spins a brushed DC motor faster with the same PWM duty cycle applied to the power FETs. A higher voltage also increases the rate of current change through the inductive motor windings.

For the DRV8832-Q1, TI recommends to set a motor voltage at the lowest system VCC. This will maintain a constant RPM across varying VCC conditions.

For example if the VCC voltage can vary from 4.5V to 5.5V, setting the VSET voltage to 1.125 V will compensate for power supply variation. The DRV8832-Q1 will set the motor voltage at 4.5 V, even if VCC is 5.5 V.

8.2.2.2 Motor Current Trip Point

When the voltage on pin ISENSE exceeds VILIM (0.2 V), overcurrent is detected. The RSENSE resistor should be sized to set the desired ILIMIT level.

$$R_{\text{ISENSE}} = 0.2 \text{ V} / I_{\text{LIMIT}}$$

To set I_{ILIMIT} to 0.5 A, $R_{ISENSE} = 0.2 \text{ V} / 0.9 \text{ A} = 0.22 \Omega$.

To prevent false trips, I_{LIMIT} must be higher than regular operating current. Motor current during start-up is typically much higher than steady-state spinning, because the initial load torque is higher, and the absence of back-EMF causes a higher voltage and extra current across the motor windings.

It can be beneficial to limit start-up current by using series inductors on the DRV8832-Q1 output, as that allows I_{LIMIT} to be lower, and it may decrease the system's required bulk capacitance. Start-up current can also be limited by ramping the forward drive duty cycle.

8.2.2.3 Sense Resistor Selection

For optimal performance, it is important for the sense resistor to be:

- Surface-mount
- Low inductance
- Rated for high enough power
- Placed closely to the motor driver

The power dissipated by the sense resistor equals IRMS² x R. For example, if peak motor current is 1 A, RMS motor current is 0.7 A, and a 0.4- Ω sense resistor is used, the resistor will dissipate 0.7 A² x 0.4 Ω = 0.2 W. The power quickly increases with higher current levels.

Resistors typically have a rated power within some ambient temperature range, along with a de-rated power curve for high ambient temperatures. When a PCB is shared with other components generating heat, margin should be added. It is always best to measure the actual sense resistor temperature in a final system, along with the power MOSFETs, as those are often the hottest components.

(2)

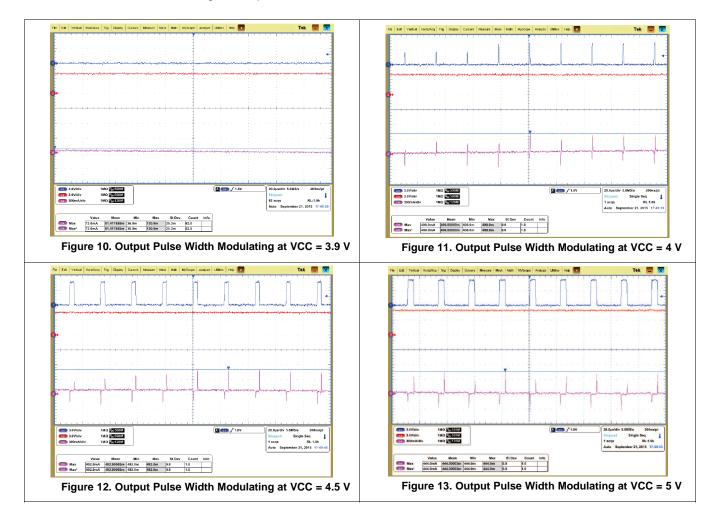
Copyright © 2013–2015, Texas Instruments Incorporated

DRV8832-Q1 SLVSBW9C – APRIL 2013–REVISED DECEMBER 2015

www.ti.com

Because power resistors are larger and more expensive than standard resistors, it is common practice to use multiple standard resistors in parallel, between the sense node and ground. This distributes the current and heat dissipation.

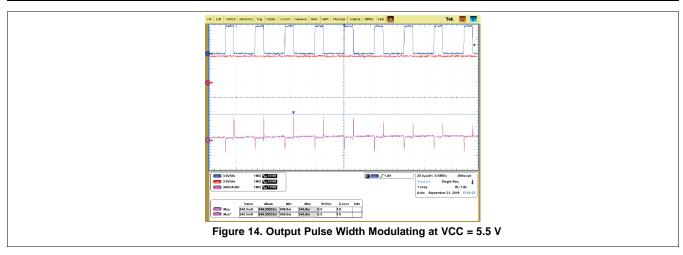
8.2.2.4 Low Power Operation


Under normal operation, using sleep mode to minimize supply current should be sufficient.

If desired, power can be removed to the DRV8832-Q1 to further decrease supply current. TI recommends to remove power to the FAULTn pullup resistor when removing power to the DRV8832-Q1. Removing power from the FAULTn pullup resistor will eliminate a current path from the FAULTn pin through an ESD protection diode to VCC. TI recommends to set both IN1 and IN2 as a logic low when power is removed.

8.2.3 Application Curves

The following scope captures show how the output duty cycle changes to as VCC increases. This allows the motor to spin at a constant speed as VCC changes. At VCC = 3.9 V, the output duty cycle is 100% on. As the VCC voltage increases to greater than 4 V, the output duty cycle begins to decrease. The output duty cycle is shown at VCC = 4.5 V, VCC = 5 V and VCC = 5.5 V.


- Channel 1 OUT1: IN1 Logic Low
- Channel 2 OUT2: IN2 Logic High
- Channel 4 Motor current: VSET 1 V
- Motor used: NMB Technologies Corporation, PPN7PA12C1

DRV8832-Q1

SLVSBW9C - APRIL 2013-REVISED DECEMBER 2015

9 Power Supply Recommendations

9.1 Power Supervisor

The DRV8832-Q1 is capable of entering a low-power sleep mode by bringing both of the INx control inputs logic low. The outputs will be disabled Hi-Z.

To exit the sleep mode, bring either or both of the INx inputs logic high. This will enable the H-bridges. When exiting the sleep mode, the FAULTn pin will pulse low.

9.2 Bulk Capacitance

Having appropriate local bulk capacitance is an important factor in motor drive system design. It is generally beneficial to have more bulk capacitance, while the disadvantages are increased cost and physical size.

The amount of local capacitance needed depends on a variety of factors, including:

- The highest current required by the motor system.
- The power supply's capacitance and ability to source current.
- The amount of parasitic inductance between the power supply and motor system.
- The acceptable voltage ripple.
- The type of motor used (Brushed DC, Brushless DC, Stepper).
- The motor braking method.

The inductance between the power supply and motor drive system will limit the rate current can change from the power supply. If the local bulk capacitance is too small, the system will respond to excessive current demands or dumps from the motor with a change in voltage. When adequate bulk capacitance is used, the motor voltage remains stable and high current can be quickly supplied.

The data sheet generally provides a recommended value, but system-level testing is required to determine the appropriate sized bulk capacitor.

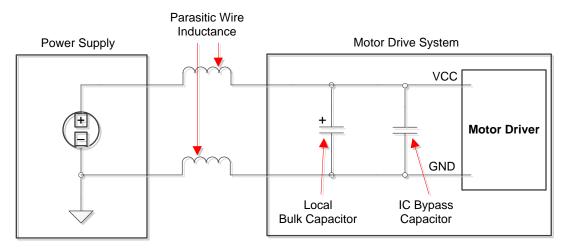


Figure 15. Example Setup of Motor Drive System with External Power Supply

The voltage rating for bulk capacitors should be higher than the operating voltage, to provide margin for cases when the motor transfers energy to the supply.

10 Layout

10.1 Layout Guidelines

The VCC pin should be bypassed to GND using low-ESR ceramic bypass capacitors with a recommended value of 0.1- μ F rated for VCC. This capacitor should be placed as close to the VCC pin as possible with a thick trace or ground plane connection to the device GND pin.

The VCC pin must be bypassed to ground using an appropriate bulk capacitor. This component may be an electrolytic and should be placed close to the DRV8832-Q1.

10.2 Layout Example

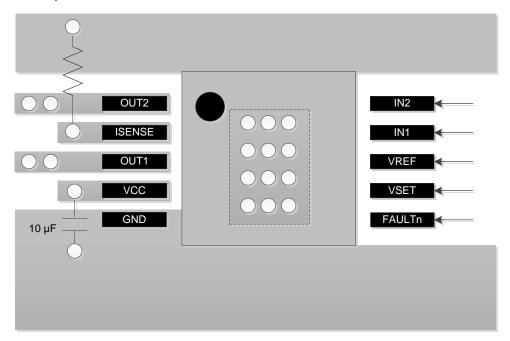


Figure 16. Layout Recommendations

10.3 Thermal Considerations

The DRV8832-Q1 has thermal shutdown (TSD) as described in *Thermal Shutdown (TSD)*. If the die temperature exceeds approximately 160°C, the device will be disabled until the temperature drops to a safe level.

Any tendency of the device to enter TSD is an indication of either excessive power dissipation, insufficient heatsinking, or too high an ambient temperature.

10.3.1 Power Dissipation

Power dissipation in the DRV8832-Q1 is dominated by the power dissipated in the output FET resistance, or $R_{DS(ON)}$. Average power dissipation when running a stepper motor can be roughly estimated by Equation 3.

$$P_{TOT} = 2 \cdot R_{DS(ON)} \cdot (I_{OUT(RMS)})^2$$

(3)

where P_{TOT} is the total power dissipation, $R_{DS(ON)}$ is the resistance of each FET, and $I_{OUT(RMS)}$ is the RMS output current being applied to each winding. $I_{OUT(RMS)}$ is equal to the approximately 0.7x the full-scale output current setting. The factor of 2 comes from the fact that at any instant two FETs are conducting winding current for each winding (one high-side and one low-side).

The maximum amount of power that can be dissipated in the device is dependent on ambient temperature and heatsinking.

Note that $R_{DS(ON)}$ increases with temperature, so as the device heats, the power dissipation increases. This must be taken into consideration when sizing the heatsink.

Thermal Considerations (continued)

10.3.2 Heatsinking

The PowerPAD[™] package uses an exposed pad to remove heat from the device. For proper operation, this pad must be thermally connected to copper on the PCB to dissipate heat. On a multi-layer PCB with a ground plane, this can be accomplished by adding a number of vias to connect the thermal pad to the ground plane. On PCBs without internal planes, copper area can be added on either side of the PCB to dissipate heat. If the copper area is on the opposite side of the PCB from the device, thermal vias are used to transfer the heat between top and bottom layers.

For details about how to design the PCB, see TI application report, *PowerPAD™ Thermally Enhanced Package* (SLMA002), and TI application brief, *PowerPAD™ Made Easy* (SLMA004), available at www.ti.com.

In general, the more copper area that can be provided, the more power can be dissipated.

11 Device and Documentation Support

11.1 Documentation Support

11.1.1 Related Documentation

For related documentation see the following:

- PowerPAD[™] Thermally Enhanced Package Application Report, SLMA002
- PowerPAD[™] Made Easy, SLMA004

11.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.3 Trademarks

PowerPAD, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

11.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconnectivity		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2015, Texas Instruments Incorporated