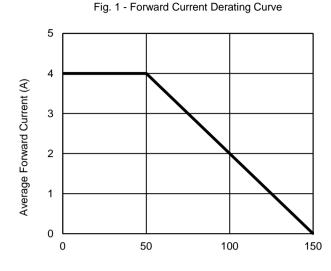


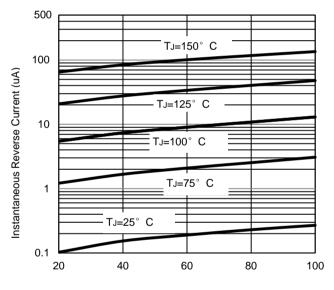
KBL005G THRU KBL10G

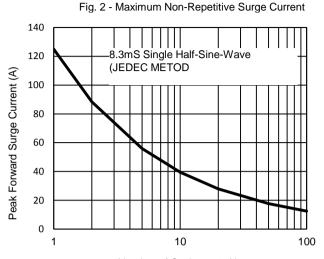
Glass Passivated Bridge Rectifiers	Reverse Voltage - 50 to 1000 Volts Forward Current - 4.0 Amperes					
Features	KBL					
Glass passivated chip	.768 (19.5)					
Low forward voltage drop	.157 (4.0) *45° .728 (18.5) RoHS					
 Ideal for printed circuit board 	COMPLIANT					
 High surge current capability 	.587 (14.9) .640 (16.3)					
 Meet UL flammability classification 94V-0 	.547 (13.9)					
	+					
Mechanical Data						
 Polarity: Symbol marked on body 						
Mounting position: Any	052 (1.3) Dia					
	.052 (1.3) Dia. .048 (1.2) Typ.					
Applications						
• General purpose use in AC/DC bridge full wave rectification,						
for SMPS, lighting ballaster, adapter, etc.	087 (2 2)					
	.087 (2.2) .071 (1.8) .180 (4.6)					
	.236 (6.0)					
	Destruction Disconsistent in tractions (Million (com)					
Maximum Patings and Electrical Characteristi	Package Outline Dimensions in Inches (Millimeters)					
Maximum Ratings and Electrical Characteristi						
Rating at 25 °C ambient temperature unless otherwise specified.						
Single phase, half wave, 60Hz, resistive or inductive load.						
For capacitive load, derate current by 20%.						


Symbol	KBI	KBI	KBI	KBI	KBI	KBI	KBI	Unit
	005G	01G	02G	04G	06G	08G	10G	
Vrrm	50	100	200	400	600	800	1000	V
Vrms	35	70	140	280	420	560	700	V
VDC	50	100	200	400	600	800	1000	V
l(AV)	4.0							А
125							•	
IFSM	125							A
l ² t	64.8							A ² s
VF	1.1							V
	10.0							μA
IR	1.0							mA
TJ	-55 to +150							°C
Тstg	-55 to +150							°C
	VRRM VRMS VDC I(AV) IFSM I ² t VF IR TJ	J 005G VRRM 50 VRMS 35 VDC 50 I(AV) 1 IFSM 1 VF 1 IR 1	Symbol 005G 01G VRRM 50 100 VRMS 35 70 VDC 50 100 I(AV)	Symbol 005G 01G 02G VRRM 50 100 200 VRMS 35 70 140 VDC 50 100 200 I(AV)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

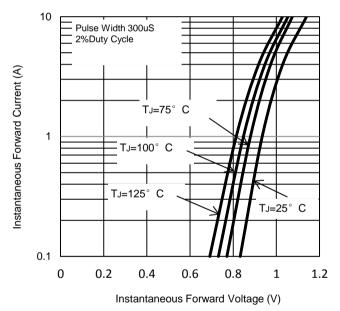
Note: Mounting conditions ,0.5" lead length maximum.

KBL*G-B-00/99-00/01 Rev. 11, 20-Dec-2019


Rating and Characteristic Curves KBL005G THRU KBL10G



Ambient Temperature (°C)



Percent of Rated Peak Reverse Voltage (%)

Number of Cycles at 60Hz

The curve above is for reference only.

KBL*G-B-00/99-00/01 Rev. 11, 20-Dec-2019

Disclaimer

ALL specifications and data are subject to be changed without notice to improve reliability function or design or other reasons.

HY makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the cotinuing production of any product. To the maximum extent permitted by applicable law, HY disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on HY's knowledge of typical requirements that are often placed on HY products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify HY's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, HY products are not designed for use in medical, life-saving, or life-sustaining applications or for any other applications in which the failure of the HY product could result in personal injury or death. Customers using or selling HY products not expressly indicated for use in such applications do so at their own risk.Please contact authorized HY personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of HY. Product names and markings noted herein may be trademarks of their respective owners.