

74AHC244Q Octal Buffer/Line Driver with 3-State Outputs

GENERAL DESCRIPTION

The 74AHC244Q is an octal buffer/line driver with 3-state outputs. The device can be used as two 4-bit buffers or one 8-bit buffer. The $1\overline{OE}$ and $2\overline{OE}$ are two output enable inputs, and each controls four of the 3-state outputs. When $n\overline{OE}$ is set high, the outputs are in high-impedance state. When $n\overline{OE}$ is set low, data transmits from the nAn inputs to the nYn outputs.

The over-voltage tolerant inputs can come up to 5.5V. With this function, this device can be used as a translator in mixed voltage environment.

This device is AEC-Q100 qualified (Automotive Electronics Council Standard Q100 Grade 1) and the use of this device is suitable for automotive applications.

FEATURES

AEC-Q100 Qualified for Automotive Applications
 Device Temperature Grade 1

 $T_A = -40^{\circ}C$ to $+125^{\circ}C$

Wide Supply Voltage Range: 2.0V to 5.5V

• All Inputs with Schmitt-Trigger Action

• Input Level: CMOS Level

• CMOS Low Power Dissipation

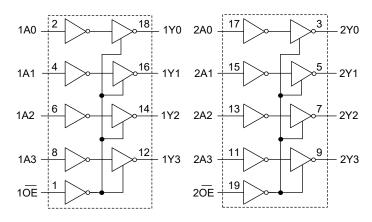
• Inputs are Over-Voltage Tolerant

• -40°C to +125°C Operating Temperature Range

• Available in a Green TSSOP-20 Package

FUNCTION TABLE

CONTROL INPUT	INPUT	OUTPUT
nŌĒ	nAn	nYn
L	L	L
L	Н	Н
Н	X	Z

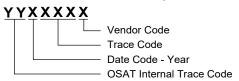

H = High Voltage Level

L = Low Voltage Level

Z = High-Impedance State

X = Don't Care

LOGIC DIAGRAM



PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
74AHC244Q	TSSOP-20	-40°C to +125°C	74AHC244QTS20G/TR	00ZTS20 YYXXXXX	Tape and Reel, 4000

MARKING INFORMATION

NOTE: YYXXXXX = Date Code, Trace Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

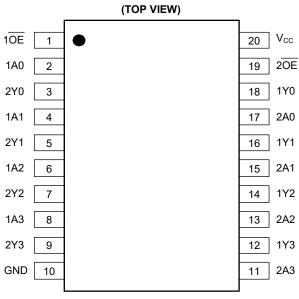
ABSOLUTE MAXIMUM RATINGS (1)

Supply Voltage, V _{CC} 0.5V to 7.0V
Input Voltage, V _I ⁽²⁾ 0.5V to 7.0V
Output Voltage, V _O (2)0.5V to MIN(7.0V, V _{CC} + 0.5V)
Input Clamp Current, I _{IK} (V _I < -0.5V)20mA
Output Clamp Current, I_{OK} ($V_O < -0.5V$ or $V_O > V_{CC} + 0.5V$)
±20mA
Output Current, I_O (V_O = -0.5V to V_{CC} + 0.5V)±25mA
Supply Current, I _{CC}
Ground Current, I _{GND} 75mA
Junction Temperature (3)+150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering, 10s)+260°C
ESD Susceptibility
HBM4000V
CDM1000V

RECOMMENDED OPERATING	CONDITIONS
Supply Voltage, V _{CC}	2.0V to 5.5V
Input Voltage, V _I	0V to 5.5V
Output Voltage, Vo	0V to V _{CC}
Output Current, Io	±8mA
Input Transition Rise and Fall Rate, $\Delta t/\Delta V$	
V _{CC} = 3.3V ± 0.3V	100ns/V (MAX)
V _{CC} = 5.0V ± 0.5V	20ns/V (MAX)
Operating Temperature Range	40°C to +125°C

OVERSTRESS CAUTION

- 1. Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.
- 2. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.
- 3. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.


ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

TSSOP-20

PIN DESCRIPTION

PIN	NAME	FUNCTION
1, 19	1 OE , 2 OE	Output Enable Inputs (Active Low).
2, 4, 6, 8	1A0, 1A1, 1A2, 1A3	Data Inputs.
18, 16, 14, 12	1Y0, 1Y1, 1Y2, 1Y3	Data Outputs.
10	GND	Ground.
17, 15, 13, 11	2A0, 2A1, 2A2, 2A3	Data Inputs.
3, 5, 7, 9	2Y0, 2Y1, 2Y2, 2Y3	Data Outputs.
20	V _{CC}	Supply Voltage.

ELECTRICAL CHARACTERISTICS

(Full = -40°C to +125°C, all typical values are measured at T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	(CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
		V _{CC} = 2.0V		Full	1.5			
High-Level Input Voltage	V_{IH}	V _{CC} = 3.0V		Full	2.1			V
		V _{CC} = 5.5V		Full	3.85			
		V _{CC} = 2.0V		Full			0.5	
Low-Level Input Voltage	V_{IL}	V _{CC} = 3.0V		Full			0.9	V
		V _{CC} = 5.5V		Full			1.65	
			$I_{\rm O}$ = -50 μ A, $V_{\rm CC}$ = 2.0V	Full	1.9	1.995		
			$I_{\rm O}$ = -50 μ A, $V_{\rm CC}$ = 3.0V	Full	2.9	2.995		V
High-Level Output Voltage	V _{ОН}	$V_I = V_{IH}$	$I_{O} = -50 \mu A$, $V_{CC} = 4.5 V$	Full	4.4	4.495		
			$I_{\rm O}$ = -4.0mA, $V_{\rm CC}$ = 3.0V	Full	2.6	2.8		
			$I_{\rm O}$ = -8.0mA, $V_{\rm CC}$ = 4.5V	Full	4.0	4.25		
			$I_{O} = 50\mu A, V_{CC} = 2.0V$	Full		0.005	0.1	
			$I_{\rm O}$ = 50 μ A, $V_{\rm CC}$ = 3.0 V	Full		0.005	0.1	
Low-Level Output Voltage	V_{OL}	$V_I = V_{IL}$	$I_{\rm O}$ = 50 μ A, $V_{\rm CC}$ = 4.5 V	Full		0.005	0.1	V
			$I_{\rm O}$ = 4.0mA, $V_{\rm CC}$ = 3.0V	Full		0.15	0.4	1
			$I_{\rm O}$ = 8.0mA, $V_{\rm CC}$ = 4.5V	Full		0.25	0.5	
Input Leakage Current	I _I	V _I = 5.5V or GNI	O, V _{CC} = 0V to 5.5V	Full		0.02	1	μΑ
Off-State Output Current	l _{oz}	$V_I = V_{IH}$ or V_{IL} , V_C	$_{\odot}$ = V _{CC} or GND, V _{CC} = 5.5V	Full		0.02	2	μΑ
Supply Current	Icc	$V_I = V_{CC}$ or GND	, I _O = 0A, V _{CC} = 5.5V	Full		0.02	10	μΑ
Input Capacitance	Cı			+25°C		5.0		pF
Output Capacitance	Co			+25°C		5.0		pF

DYNAMIC CHARACTERISTICS

(For test circuit, see Figure 1. Full = -40°C to +125°C, all typical values are measured at V_{CC} = 3.3V or 5V, T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDI	TIONS	TEMP	MIN (1)	TYP	MAX (1)	UNITS
		nAn to nYn,	C _L = 15pF	Full	1.0	4.0	10.0	
Propagation Delay (2)		$V_{CC} = 3.0V \text{ to } 3.6V$	C _L = 50pF	Full	1.0	5.5	13.5	200
Propagation Delay	t _{PD}	nAn to nYn,	C _L = 15pF	Full	1.0	3.5	6.5	ns
		$V_{CC} = 4.5V \text{ to } 5.5V$	C _L = 50pF	Full	1.0	4.0	8.5	
		nOE to nYn,	C _L = 15pF	Full	1.0	6.5	12.5	
Enable Time (2)	t _{EN}	$V_{CC} = 3.0V \text{ to } 3.6V$	C _L = 50pF	Full	1.0	8.0	18.0	ns
Enable Time		nOE to nYn,	C _L = 15pF	Full	1.0	5.0	8.5	
		$V_{CC} = 4.5V \text{ to } 5.5V$	C _L = 50pF	Full	1.0	6.0	12.0	
		nOE to nYn,	C _L = 15pF	Full	1.0	7.0	11.0	
Disable Time (2)		$V_{CC} = 3.0V \text{ to } 3.6V$	C _L = 50pF	Full	1.0	11.5	16.0	ns
Disable Time Y	t _{DIS}	nOE to nYn,	C _L = 15pF	Full	1.0	5.0	8.5	
		$V_{CC} = 4.5V \text{ to } 5.5V$	C _L = 50pF	Full	1.0	6.0	10.5	
Power Dissipation Capacitance (3)	C_{PD}	$C_L = 50pF, f_i = 1MHz$	$V_{I} = GND \text{ to } V_{CC}$	+25°C		11.0		pF

NOTES:

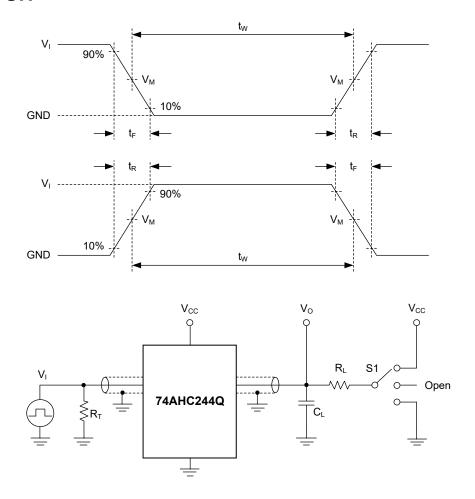
- 1. Specified by design and characterization, not production tested.
- 2. t_{PD} is the same as t_{PLH} and t_{PHL} . t_{DIS} is the same as t_{PLZ} and t_{PHZ} . t_{EN} is the same as t_{PZL} and t_{PZH} .
- 3. C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

$$\mathsf{P}_\mathsf{D} = \mathsf{C}_\mathsf{PD} \times \mathsf{V}_\mathsf{CC}^2 \times \mathsf{f}_\mathsf{i} \times \mathsf{N} + \Sigma (\mathsf{C}_\mathsf{L} \times \mathsf{V}_\mathsf{CC}^2 \times \mathsf{f}_\mathsf{o})$$

where:

 f_i = Input frequency in MHz.

 f_o = Output frequency in MHz.


C_L = Output load capacitance in pF.

V_{CC} = Supply voltage in Volts.

N = Number of inputs switching.

 $\Sigma(C_L \times V_{CC}^2 \times f_o) = Sum \text{ of outputs.}$

TEST CIRCUIT

Test conditions are given in Table 1.

Definitions for test circuit:

R_L: Load resistance.

C_L: Load capacitance (includes jig and probe).

 R_T : Termination resistance (equals to output impedance Z_0 of the pulse generator).

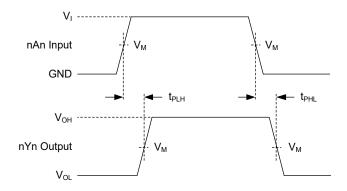

S1: Test selection switch.

Figure 1. Test Circuit for Measuring Switching Times

Table 1. Test Conditions

SUPPLY VOLTAGE	INPUT		L	OAD	S1 POSITION		
V _{CC}	V _I t _R , t _F		CL	R_L	t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
2.0V to 5.5V	V _{CC}	≤ 3.0ns	15pF, 50pF	1kΩ	Open	GND	V _{CC}

WAVEFORMS

Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Output Low-to-Off Off-to-Low Volume to the control of the control

Figure 2. Input (nAn) to Output (nYn) Propagation Delay Times

Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 3. Enable and Disable Times

Table 2. Measurement Points

SUPPLY VOLTAGE	INF	TU			
Vcc	V _I V _M ⁽¹⁾		V _M	V _X	V _Y
2.0V to 5.5V	V _{CC}	0.5 × V _{CC}	0.5 × V _{CC}	V _{OL} + 0.3V	V _{OH} - 0.3V

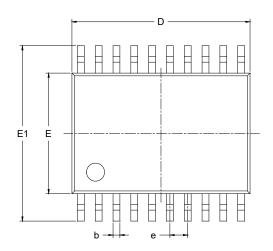
NOTE:

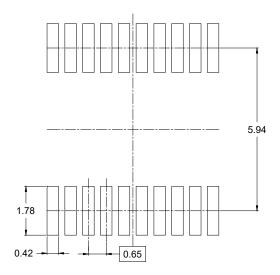
1. The measurement points should be V_{IH} or V_{IL} when the input rising or falling time exceeds 3.0ns.

Octal Buffer/Line Driver with 3-State Outputs

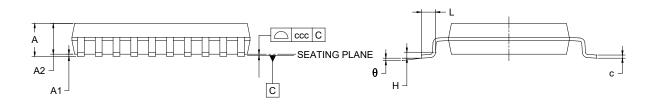
74AHC244Q

REVISION HISTORY


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


Changes from Original (NOVEMBER 2022) to REV.A

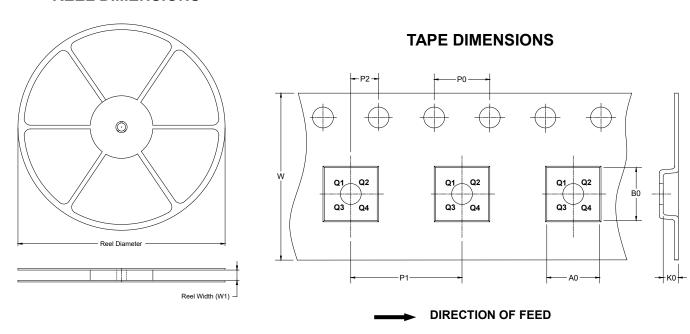
Page


PACKAGE OUTLINE DIMENSIONS

TSSOP-20

RECOMMENDED LAND PATTERN (Unit: mm)

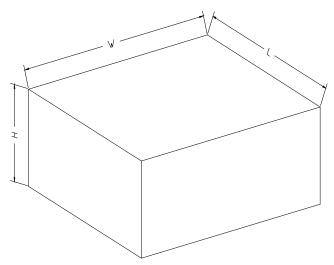
Cumbal	Dimensions In Millimeters							
Symbol	MIN	MOD	MAX					
Α	-	-	1.200					
A1	0.050	-	0.150					
A2	0.800	-	1.050					
b	0.190	0.190 -						
С	0.090	0.090 -						
D	6.400	-	6.600					
E	4.300	-	4.500					
E1	6.200	-	6.600					
е		0.650 BSC						
L	0.450	-	0.750					
Н								
θ	0°	8°						
ccc		0.100						


NOTES:

- 1. Body dimensions do not include mode flash or protrusion.
- This drawing is subject to change without notice.
 Reference JEDEC MO-153.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TSSOP-20	13"	16.4	6.80	6.90	1.50	4.0	8.0	2.0	16.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
13"	386	280	370	5