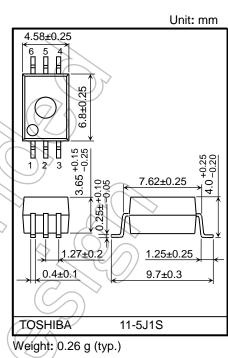
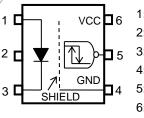
TOSHIBA PHOTOCOUPLER IRED & PHOTO-IC

TLP718

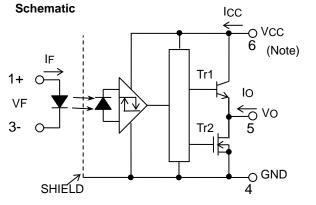

Isolated Bus Drivers High Speed Line Receivers Microprocessor System Interfaces

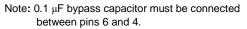
The Toshiba TLP718 consists of an infrared emitting diode and an integrated high-gain, high-speed photodetector. This unit is a 6-pin SDIP. The TLP718 is 50% smaller than the 8-PIN DIP and meets the reinforced insulation class requirements of international safety standards. Therefore the mounting area can be reduced in equipment requiring safety standard certification.


The detector has a totem pole output stage to provide both source and sink driving. The detector IC has an internal shield that provides a guaranteed common-mode transient immunity of 10 kV/ μ s.

The TLP718 is inverter logic type. For buffer logic type, the TLP715 is in lineup.

- Inverter logic type (totem pole output)
- Guaranteed performance over temperature : -40 to 100°C
- Power supply voltage : 4.5 to 20 V
- Input current: IFHL = 3 mA (max)
- Switching time (tpHL / tpLH): 250 ns (max)
- Common-mode transient immunity : ±10 kV/µs (min)
- Isolation voltage : 5000 Vrms (min)
- UL-recognized: UL 1577, File No.E67349
- cUL-recognized: CSA Component Acceptance Service No.5A File No.E67349
- VDE-approved: EN 60747-5-5, EN 62368-1 (Note1)




Pin Configuration (Top View)

1: ANODE 2: N.C. 3: CATHODE 4: GND

5: VO (Output) 6: VCC

Start of commercial production 2008-12

Note 1 : When a VDE approved type is needed,

please designate the Option(D4).

Construction Mechanical Rating

	7.62 mm pitch standard type	10.16 mm pitch TLPXXXF type
Creepage Distance	7.0 mm (min)	8.0 mm (min)
Clearance	7.0 mm (min)	8.0 mm (min)
Insulation Thickness	0.4 mm (min)	0.4 mm (min)

Truth Table

Input	LED	Tr1	Tr2	Output
Н	ON	OFF	ON	L
L	OFF	ON	OFF	Н

Absolute Maximum Ratings (Ta = 25°C)

	CHARACTERISTIC	SYMBOL	RATING	UNIT
	Forward Current (Ta ≤ 83°C)	lF	20	mA
	Forward Current Derating (Ta \geq 83°C)	ΔI _F /ΔTa	-0.48	mA/°C
	Peak Transient Forward Current (Note 1)	IFPT	1	A
LED	Reverse Voltage	VR	5	$(\mathbf{v})^{2}$
	Input power dissipation	PD	40	mW
	Input power dissipation derating (Ta \ge 83°C)	ΔΡ₀/ΔΤα	-0.96	mW/°C
	Junction Temperature	Тј	125	°C
	Output Current 1 (Ta ≤ 25°C)	lot	25/-15	mA
	Output Current 2 (Ta ≤ 100°C)	102	13 / -13	mA
OR	Output Voltage	Vo	-0.5 to 20	
DETECTOR	Supply Voltage	Vcc	-0.5 to 20	V
DE	Output power dissipation	Po	75	mW
	Output power dissipation derating $(Ta \ge 25^{\circ}C)$	$\Delta P_0 / \Delta T_a$	-0.75	mW / °C
	Junction Temperature	Tj	125	°C
Oper	ating Temperature Range	Topr	-40 to 100	°C
Stora	ge Temperature Range	Tstg	-55 to 125	°C
Lead	Solder Temperature (10 s)	Tsol	260	°C
Isola	tion Voltage (AC, 60 s, R.H. ≤ 60 %) (Note 2)	BVs	5000	Vrms

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 1: Pulse width PW \leq 1 µs, 300 pps.

Note 2: Device Considered a two terminal device: pins 1, 2 and 3 shorted together and pins 4, 5 and 6 shorted together.

Recommended Operating Conditions

CHARACTERISTIC		SYMBOL	MIN	TYP.	MAX	UNIT
Input Current, ON		IF (ON)	4.5	-	10	mA
Input Voltage, OFF		VF (OFF)	0	-	0.8	V
Supply Voltage	(Note 1)	Vcc	4.5	-	20	V
Operating Temperature		T _{opr}	-40	-	100	°C

Note: Recommended operating conditions are given as a design guideline to obtain expected performance of the device. Additionally, each item is an independent guideline respectively. In developing designs using this product, please confirm specified characteristics shown in this document.

Note 1: This item denotes operating ranges, not meaning of recommended operating conditions.

Electrical Characteristics

(Unless otherwise specified, Ta = -40 to 100° C, V _{CC} = 4.5 to 20 V	(Unless otherwise	specified, Ta =	-40 to 100°C,	$V_{CC} = 4.5$ to 20 V
---	-------------------	-----------------	---------------	------------------------

CHARACTERISTIC	SYMBOL	TEST CIRCUIT	CONDITION	MIN	TYP.	MAX	UNIT
Input forward voltage	VF	_	I _F = 5 mA, Ta = 25 °C	1.4	1.6	1.7	V
Temperature coefficient of forward voltage	ΔV _F /ΔTa		I _F = 5 mA		-2.0	_	mV/°C
Input reverse current	IR	_	V _R = 5 V, Ta = 25 °C		\mathcal{D}	10	μΑ
Input capacitance	CT		V = 0 V, f = 1 MHz, Ta = 25 °C	¥.	45	_	pF
Logic LOW output voltage	Vol	Figure 1	I_{OL} = 3.5 mA , I_{F} = 5 mA	$\overline{\mathbf{G}}$	0.2	0.6	V
Logic HIGH output voltage (Note 1)	Vон	Figure 2	$I_{OH} = -2.6 \text{ mA},$ $V_{CC} = 4.5 \text{ V}$ VF = 0.8 V $V_{CC} = 20 \text{ V}$	2.7 17.4	3.5 19		v <
Logic LOW supply current	ICCL	Figure 3	IF = 5 mA	$-\diamond$	<u> </u>	3.0	mA
Logic HIGH supply current	Іссн	Figure 4	VF = 0 V	-	$\sum_{i=1}^{n}$	3.0	mA
Logic LOW short circuit output current (Note 2)	IOSL	Figure 5	$I_{F} = 5 \text{ mA}$ $V_{CC} = V_{O} = 5.5 \text{ V}$ $V_{CC} = V_{O} = 20 \text{ V}$	15	80 90	_	mA
Logic HIGH short circuit output current (Note 3)	IOSH	Figure 6	$V_{F} = 0 V, \qquad V_{CC} = 5.5 V$ $V_{O} = GND \qquad V_{CC} = 20 V$	-10	-15 -20		mA
Input current logic LOW output	IFHL	-((lo = 3.5 mA, Vo < 0.6 V))_	0.4	3	mA
Input voltage logic HIGH output	VFLH	(-1)	lo = −2.6 mA, Vo > 2.4 V	0.8	_	_	V
Input current hysteresis	IHYS		Vcc = 5 V	_	0.05	_	mA

Note: All typical values are at Ta = 25 °C, V_{CC} = 5 V unless otherwise specified.

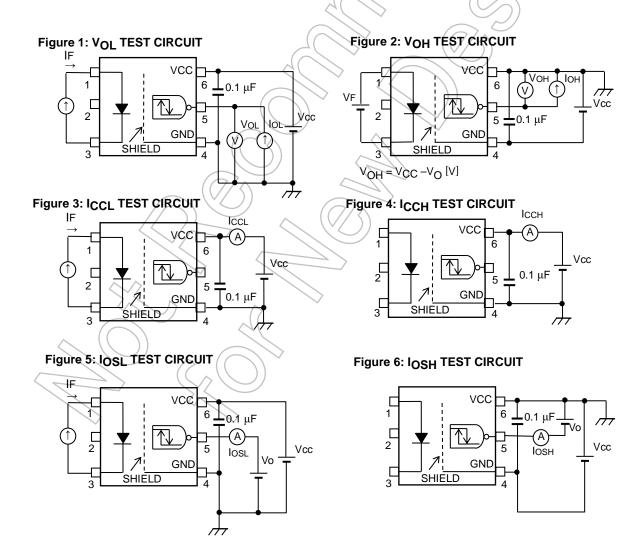
Note 1: $V_{OH} = V_{CC} - V_O[V]$

Note 2: Duration of output short circuit time should not exceed 10 ms.

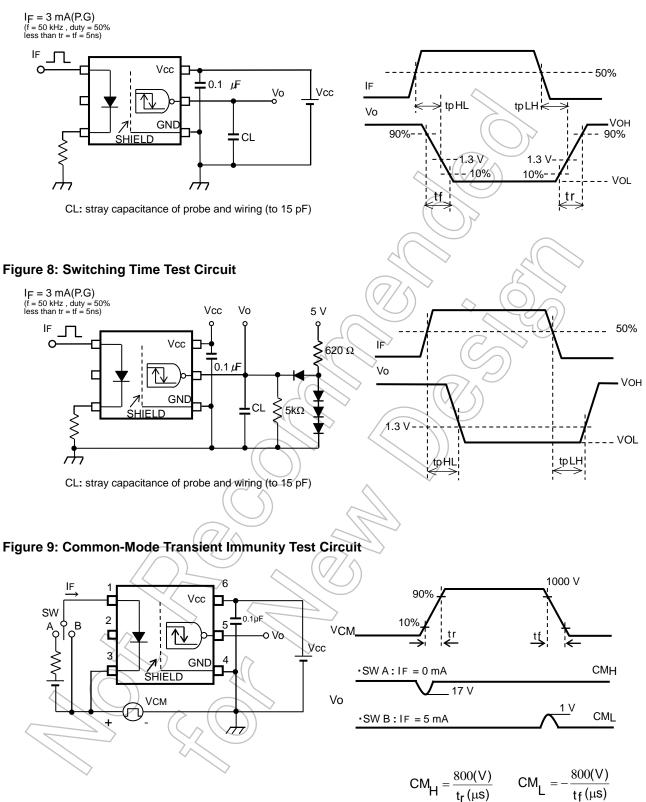
Note 3: A ceramic capacitor (0.1 μF) should be connected from pin 6 to pin 4 to stabilize the operation of the high gain linear amplifier. Failure to provide the bypassing may impair the switching property. The total lead length between capacitor and coupler should not exceed 1 cm.

Isolation Characteristics (Ta = 25°C)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN	TYP.	MAX	UNIT
Capacitance input to output	CS (Note 1)	Vs = 0 V, f = 1 MHz	_	1.0	_	pF
Isolation resistance	RS (Note 1)	R.H. ≤ 60 %, Vs = 500 V	1×10 ¹²	10 ¹⁴	_	Ω
Isolation voltage	BVS (Note 1)	AC, 60 s	5000	_	_	Vrms


Note : This device is considered as a two-terminal device: Pins 1, 2 and 3 are shorted together, and pins 4, 5 and 6 are shorted together.

Switching Characteristics


(Unless otherwise specified, Ta = -40 to 100° C, V_{CC} = 4.5 to 20 V)

CHARACTERISTIC	SYMBOL	TEST CIRCUIT	CONDITION	MIN	TYP.	MAX	UNIT
Propagation delay time to logic HIGH output	tpLH		$I_F = 3 \rightarrow 0 \text{ mA}$	30	120	250	ns
Propagation delay time to logic LOW output	t _{pHL}		$I_F = 0 \rightarrow 3 \text{ mA}$	30	120	250	ns
Switching time dispersion between ON and OFF	tpHL- t _{pLH}	Figure 7, Figure 8	_	\mathcal{A}	A	220	ns
Rise Time (10 – 90 %)	tr		$I_F = 3 \rightarrow 0 \text{ mA}, V_{CC} = 5 \text{ V}$	(\mathcal{A})	30		ns
Fall Time (90 – 10 %)	t _f		$I_F = 0 \rightarrow 3 \text{ mA}, V_{CC} = 5 \text{ V}$		30		ns
Common-mode transient Immunity at HIGH level output	CMH	Figure 0	V _{CM} = 1000 V _{p-p} , I _F = 0 mA, V _{CC} = 20 V, Ta = 25 °C	10000		1//	V/µs
Common-mode transient Immunity at LOW level output	CML	Figure 9	V _{CM} = 1000 V _P -p, IF = 5 mA, V _{CC} = 20 V, Ta = 25 °C	-10000			V/µs

Note: All typical values are at Ta = 25 °C.

Figure 7: Switching Time Test Circuit

 CM_H (CM_L) is the maximum rate of rise (fall) of the common mode voltage that can be sustained with the output voltage in the high (low) state.

EN 60747-5-5 Option:(D4)

Types :TLP718, TLP718F

Type designations for "option: (D4)", which are tested under EN 60747 requirements.

Ex.: TLP718 (D4-TP,F)

D4 : EN 60747 option TP : Standard tape & reel type F : [[G]]/RoHS COMPATIBLE (Note 1)

Note: Use TOSHIBA standard type number for safety standard application. Ex.: TLP718 (D4-TP,F) \rightarrow TLP718

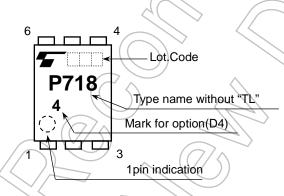
Note 1 : Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product.

The RoHS is the Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.

Symbol Unit Description Rating Application classification for rated mains voltage ≤ 300 V_{rms} I-IV for rated mains voltage ≤ 600 V_{rms} 1-111 40 / 100 / 21 Climatic classification Pollution degree 2 TLPxxx type 890 Maximum operating insulation voltage Vpk VIORM TLPxxxF type 1140 Input to output test voltage, method A TLPxxx type 1424 Vpr = 1.6×VIORM, type and sample test Vpr Vpk tp = 10 s, partial discharge < 5 pC TLPxxxF type 1824 Input to output test voltage, method B TLPxxx type 1670 Vpr = 1.875×VIORM, 100% production test Vpr Vpk TLPxxxF type 2140 tp = 1 s, partial discharge < 5 pC Highest permissible overvoltage 8000 Vpk VTR (transient overvoltage, tpr = 60 s) Safety limiting values (max permissible ratings in case of fault, also refer to thermal derating curve) current (input current I_F , $P_{si} = 0$) 300 lsi mΑ power (output or total power dissipation) Psi 700 mW temperature Tsi 150 °C Insulation resistance. V_{IO} = 500 V, Ta = 25°C $\geq \! 10^{12}$ V_{IO} = 500 V, Ta = 100°C ≥10¹¹ Rsi Ω V_{IO} = 500 V, Ta = Tsi ≥10⁹

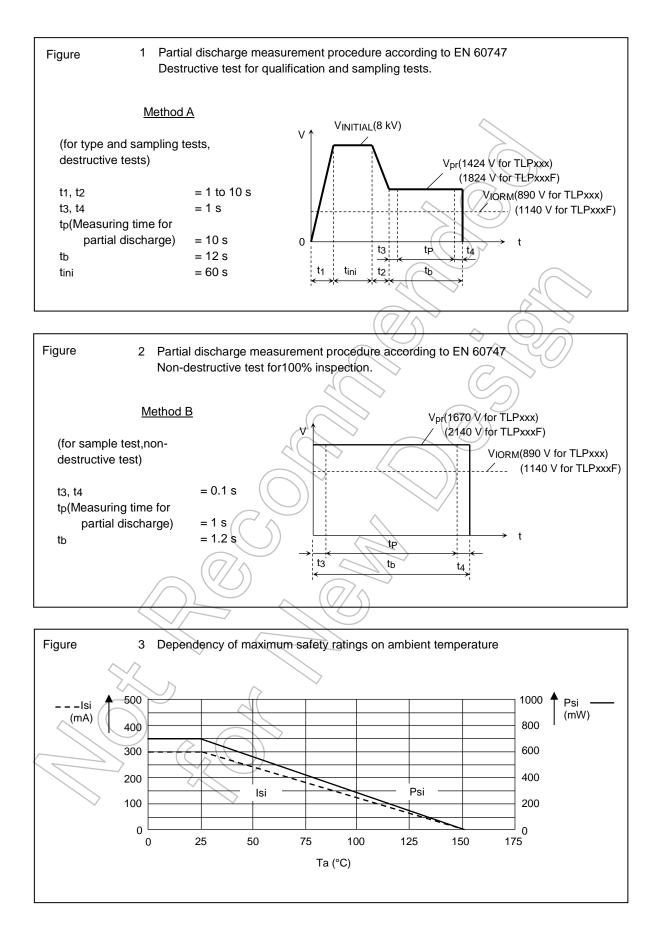
EN 60747 Isolation Characteristics

Insulation Related Specifications


		7.62 mm pitch TLPxxx type	10.16 mm pitch TLPxxxF type	
Minimum creepage distance	Cr	7.0 mm	8.0 mm	
Minimum clearance	CI	7.0 mm	8.0 mm	
Minimum insulation thickness	ti	0.4 n	nm	
Comperative tracking index	СТІ	175		

- Note: If a printed circuit is incorporated, the creepage distance and clearance may be reduced below this value. If this is not permissible, the user shall take suitable measures.
- Note: This photocoupler is suitable for 'safe electrical isolation' only within the safety limit data. Maintenance of the safety data shall be ensured by means of protective circuits.

Δ


Marking on product for EN 60747 :

Marking Example:

Note: The above marking is applied to the photocouplers that have been qualified according to option (D4) of EN 60747.

© 2019 Toshiba Electronic Devices & Storage Corporation

