

Product Specification

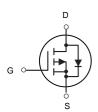
XBLW SI2333

P-Channel Enhancement Mode MOSFET

WEB | www.xinboleic.com 🗦

Description

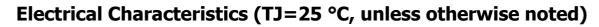
The SI2333 uses advanced trench technology to provide excellent RDS(ON), low gate charge and operation with gate voltages as low as 2.5V. This device is suitable for use as a Battery protection or in other Switching application.


General Features

- ➢ VDS = -20V,ID = -7A
- ➤ RDS(ON) < 22mΩ @ VGS=4.5V</p>

Application

- > High power and current handing capability
- Lead free product is acquired
- Surface mount package
- PWM applications
- Load switch
- Power management


P-Channel MOSFET

Package Marking and Ordering Information

Product Model	Package Type	Marking	Packing	Packing Qty
XBLW SI2333	SOT-23-3L	20P07	Таре	3000Pcs/Reel

Absolute Maximum Ratings (TA=25°Cunless otherwise noted)

Symbol	Parameter	Limit	Unit
Vds	Drain-Source Voltage	-20	V
Vgs	Gate-Source Voltage	±12	V
ID	Drain Current-Continuous	-7	А
Іл	Drain Current-Pulsed (Note 1)	-18.8	А
PD	Maximum Power Dissipation	1	W
Тј,Тѕтб	Operating Junction and Storage Temperature Range	-55 To 150	°C
Reja	Thermal Resistance, Junction-to-Ambient (Note 2)	125	°C /W

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} =0V , I _D =-250uA	-20			V
∆BV _{DSS} ∕∆T _J	BVDSS Temperature Coefficient	Reference to 25°C,I _D =-1mA		-0.01		V/°C
	Static Drain-Source On-Resistance ²	V _{GS} =-4.5V , I _D =-6.5A		18	22	mΩ
R _{DS(ON)}		V _{GS} =-2.5V , I _D =-5A		25	39	
		V _{GS} =-1.8V , I _D =-1.5A				
V _{GS(th)}	Gate Threshold Voltage		-0.6	-0.8	-1.4	V
$ riangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	$V_{GS}=V_{DS}$, $I_D=-250$ uA				mV/°C
	Drain-Source Leakage Current	V _{DS} =-20V , V _{GS} =0V , T _J =25°C			-1	
I _{DSS}		V _{DS} =-16V , V _{GS} =0V , T _J =55°C				uA
I _{GSS}	Gate-Source Leakage Current	V_{GS} = ±12V , V_{DS} =0V			±100	nA
gfs	Forward Transconductance	V _{DS} =-5V , I _D =-3A		10		S
Qg	Total Gate Charge (-4.5V)			10		
Q _{gs}	Gate-Source Charge	V _{DS} =-10V , V _{GS} =-4.5V , I _D =-6 A 5		1.5		nC
Q_{gd}	Gate-Drain Charge			3		
T _{d(on)}	Turn-On Delay Time			30		
Tr	Rise Time	V_{DD} =-10V , V_{GS} =-4.5V , R_{G} =6.0 Ω I _D =-1A		25		
T _{d(off)}	Turn-Off Delay Time			70		ns
T _f	Fall Time			50		
C _{iss}	Input Capacitance			1210		
Coss	Output Capacitance	V _{DS} =-10V , V _{GS} =0V , f=1MHz		310		pF
C _{rss}	Reverse Transfer Capacitance			290		

Diode Characteristics

伯乐[®]

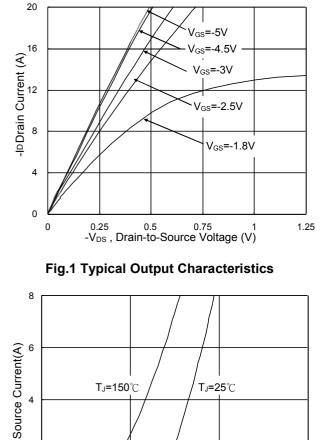
XINBOLE

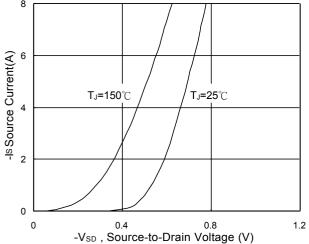
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current ^{1,4}				-7.0	Α
I _{SM}	Pulsed Source Current ^{2,4}	V _G =V _D =0V , Force Current			-18.8	Α
V _{SD}	Diode Forward Voltage ²	V _{GS} =0V , I _S =-1A , T _J =25°C			-1	V
t _{rr}	Reverse Recovery Time			52		nS
Q _{rr}	Reverse Recovery Charge	I⊧=-4A , dI/dt=100A/µs , Tյ=25°C		28		nC

Note :

1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.

2.The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%


3. The power dissipation is limited by 150° C junction temperature


4. The data is theoretically the same as I_D and I_{DM} , in real applications , should be limited by total power dissipation.

XBLW SI2333 P-Channel Enhancement Mode MOSFET

Typical Characteristics

Fig.3 Forward Characteristics Of Reverse

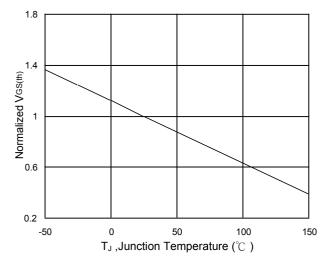


Fig.5 Normalized V_{GS(th)} vs. T_J

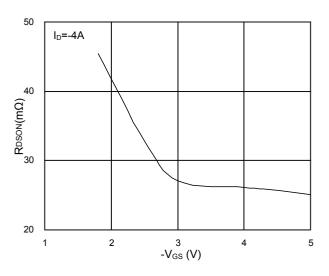
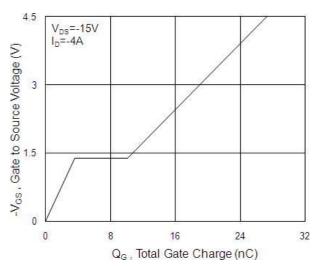



Fig.2 On-Resistance vs. Gate-Source

Fig.4 Gate-Charge Characteristics

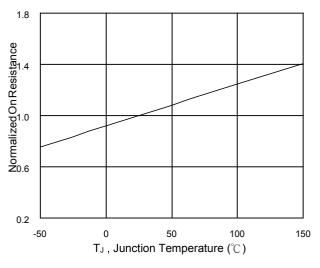
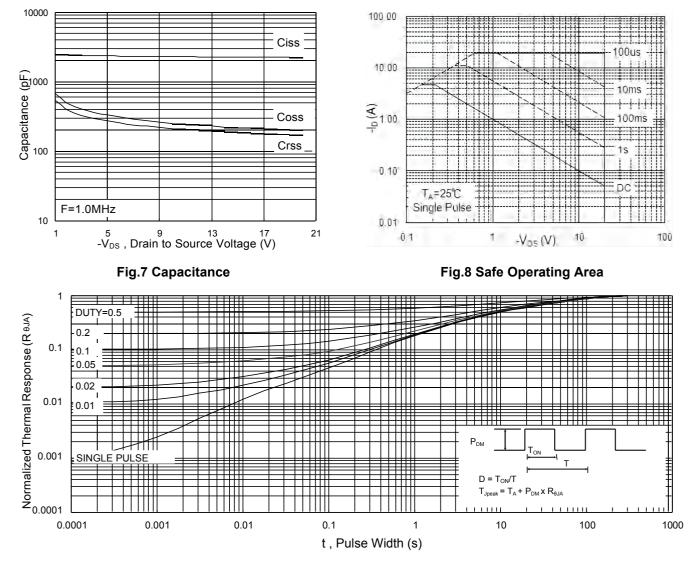
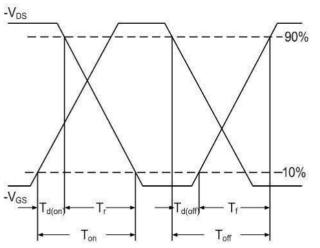
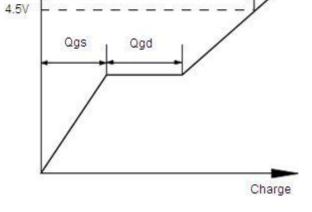




Fig.6 Normalized RDSON vs. TJ

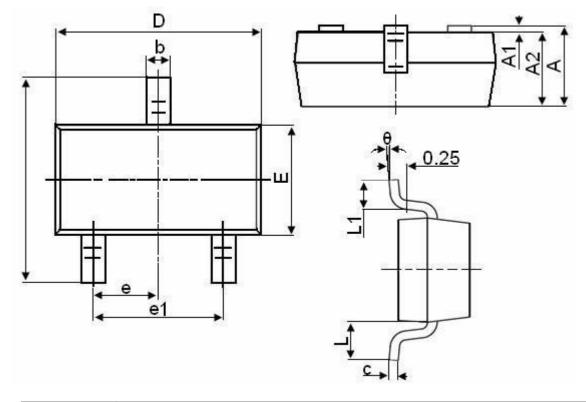

F®

OLE

Ν В

Fig.10 Switching Time Waveform

-V_{GS}


Qg



Package Information

SOT23-3L

Symbol	Dimensions in Millimeters		
	MIN.	MAX.	
А	1.050	1.250	
A1	0.000	0.100	
A2	1.050	1.150	
b	0.300	0.500	
с	0.100	0.200	
D	2.800	3.000	
E	1.500	1.700	
E1	2.650	2.950	
e		0.950TYP	
e1	1.800	2.000	
L		0.550REF	
L1	0.300	0.600	
θ	0°	8°	

Statement:

- XBLW reserves the right to modify the product manual without prior notice! Before placing an order, customers need to confirm whether the obtained information is the latest version and verify the completeness of the relevant information.
- Any semi-guide product is subject to failure or malfunction under specified conditions. It is the buyer's responsibility to comply with safety standards when using XBLW products for system design and whole machine manufacturing. And take the appropriate safety measures to avoid the potential in the risk of loss of personal injury or loss of property situation!
- XBLW products have not been licensed for life support, military, and aerospace applications, and therefore XBLW is not responsible for any consequences arising from the use of this product in these areas.
- If any or all XBLW products (including technical data, services) described or contained in this document are subject to any applicable local export control laws and regulations, they may not be exported without an export license from the relevant authorities in accordance with such laws.
- The specifications of any and all XBLW products described or contained in this document specify the performance, characteristics, and functionality of said products in their standalone state, but do not guarantee the performance, characteristics, and functionality of said products installed in Customer's products or equipment. In order to verify symptoms and conditions that cannot be evaluated in a standalone device, the Customer should ultimately evaluate and test the device installed in the Customer's product device.
- XBLW documentation is only allowed to be copied without any alteration of the content and with the relevant authorization. XBLW assumes no responsibility or liability for altered documents.
- XBLW is committed to becoming the preferred semiconductor brand for customers, and XBLW will strive to provide customers with better performance and better quality products.