

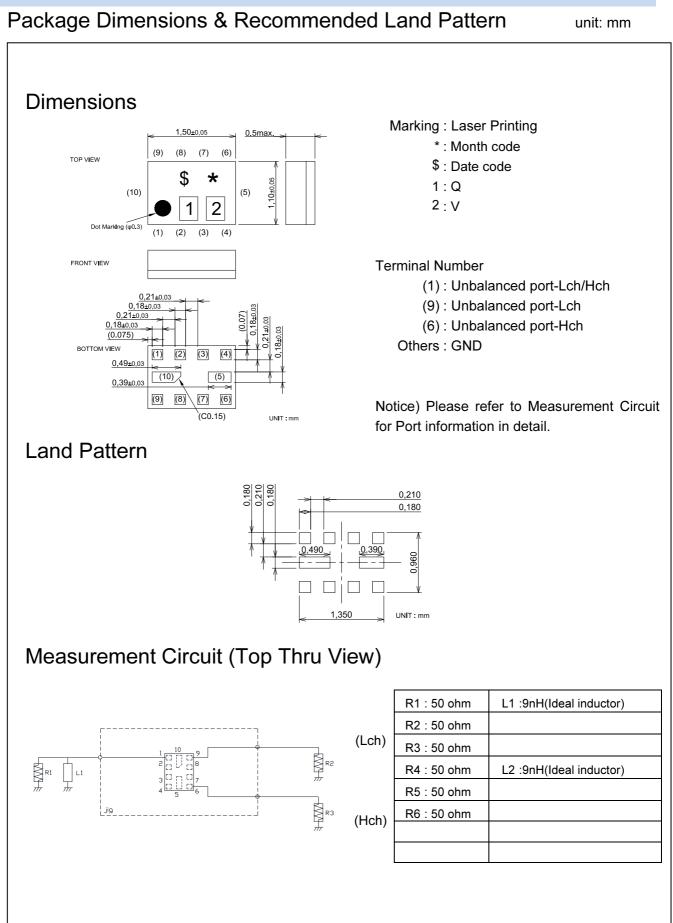
Datasheet of SAW Device

SAW Dual Filter

for GSM850_GSM900 / 1in2out Unbalanced / LH /1511

Murata PN: SAWFD881MAA0F0A

Note : This Murata SAW Component is Consumer grade product and applicable for Cellular phone or similar end devices. Please also read Important Notice at the end of this document.


Revision
Е

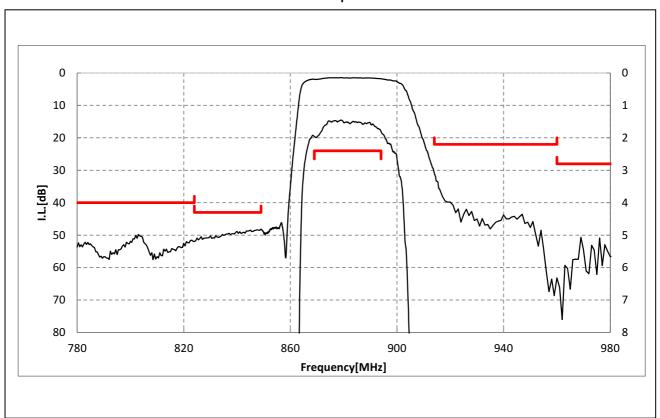
General Information

- Operating temperature	: -30 to +85 deg.C
- Storage temperature	: -40 to +85 deg.C
- Input Power	: +13 dBm 2000 h
- D.C. Volatage between the terminals	: 3V (25+/-2 deg.C)
- Minimum Resistance between the terminals	: 10M ohm
- RoHS compliance	: Yes
- ESD (ElectroStatic Discharge) sensitive devi	ice

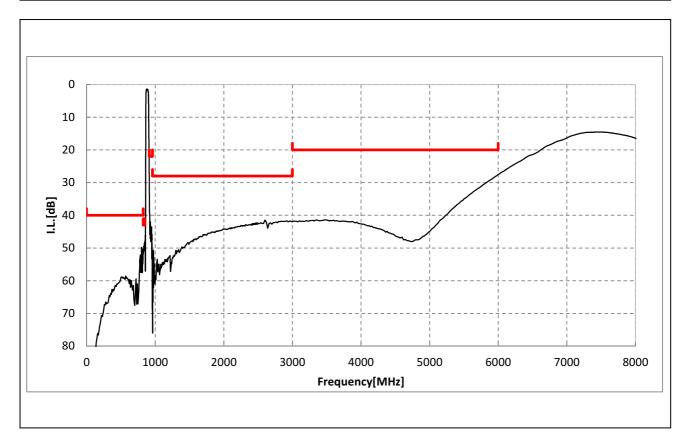
Electrical Characteristic < Low Freq. Filter >

Low Freq. Filter						Characteristics (-30 to +85 deg.C)			Nista
								Unit	Note
						typ.*	max.		
Center Frequency						881.5		MHz	
Insertion Loss	869.	to	894.	MHz		2.0	2.4	dB	
	869.	to	894.	MHz		2.0	2.2	dB	+23 to +27deg.C
Ripple Deviation	869.	to	894.	MHz		0.6	1.2	dB	
VŚŴR	869.	to	894.	MHz		1.6	2.0		
	869.	to	894.	MHz	40	1.6	1.9	JD	+23 to +27deg.C
Absolute Attenuation	0.1	to	824.	MHz	40	50		dB	
	824.	to	849.	MHz	43	48		dB	
	914. 960.	to	960. 3000.	MHz	22 28	26 42		dB dB	
		to		MHz	20	28		dB dB	
	3000.	to	6000.	MHz	20	20		aв	
	┣────								
	 								
	 								
	L								
	L								
	ļ								
	L								
	L								
	L								
	ļ								
	┣────								
	 								
	 								
	 								
	 								l
	<u> </u>								
1									
	<u> </u>								
	<u> </u>								
1									
1	1								

* Typical value at 25±2deg.C


Electrical Characteristic < High Freq. Filter >

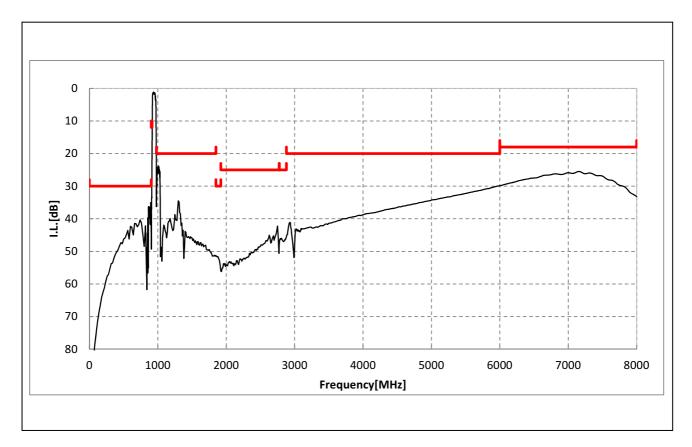
Characteristics Unit Note min typ: max. Unit Note Center Frequency 925 10 960 MHz 124 23 dB											
min. typ.* max. max. max. max. max. insertion Los 925 10 960 MHz 124 23 980 mm.				Cha							
Center Frequency 925 10 960 MHz 24 29 dB 925 10 990 MHz 24 26 dB +23 to +27 deg.C Righe Devation 925 10 990 MHz 22 2.6 dB VSWR 925 10 990 MHz 2.2 2.8 dB VSWR 925 10 990 MHz 12 17 dB 905 10 915<	High Freq. Filter							1	Unit	Note	
insertion Loss 925. 10 980. MHz 24 2.6 dB registree and the second						min.		max.			
insertion Loss 925. to 960. MHz 2.4 2.6 dB +210 +27deg.C Ripple Deviation 925. to 960. MHz 2.4 2.6 dB +210 +27deg.C WSWR 925. to 960. MHz 2.2 2.8 - - Absolute Attenuation 0.1 to 905. MHz 1.2 1.7 dB +230 +27deg.C 905. to 915. MHz 1.4 1.7 dB +230 +27deg.C 905. to 915. MHz 2.8 dB - - 905. to 915. MHz 2.5 4.2 dB - 1800. to 1920. MHz 2.5 4.4 dB - 2775. to 2880. MHz 25 4.2 dB - - 2775. to 2800. MHz 18 25 dB - - 2775. to 2800. MHz 18 25 dB <td>Center Frequency</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Center Frequency										
State State <th< td=""><td>Insertion Loss</td><td></td><td>to</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Insertion Loss		to								
Ripple Deviation 925 to 960 MHz 1.2 1.9 dB Absolute Attenuation 0.1 to 905. MHz 1.2 2.2 2.8 Absolute Attenuation 0.1 to 905. MHz 1.4 1.7 dB 905. to 915. MHz 1.4 1.7 dB +23 to +27deg.C 905. to 915. MHz 2.8 dB - - 905. to 915. MHz 2.5 42 dB - - - dB +23 to +27deg.C - BB - - - dB - - - dB - - BB - - - BB - - BB - - -		925.		960.			2.4	2.6	dB	+23 to +27deg.C	
VSWR 925 to 960 MHz 22 2.6 Absolute Attenuation 10 to 00.5 MHz 12 17 dB 905 to 915. MHz 12 17 dB +23 to +27 deg C 980 to 1850. MHz 20 28 dB	Ripple Deviation	925.		960.	MHz			1.9	dB	Ŭ	
O.1 10 005 MH2 30 35 ØB 905 10 915 MH2 14 17 ØB +23 to +27 deg C 905 10 915 MH2 14 17 ØB +23 to +27 deg C 905 10 915 MH2 30 52 ØB 1850 10 1920 MH2 25 42 ØB 1920 10 275 MH2 25 42 ØB 2775 10 2880 MH2 25 42 ØB 6000 10 8000 MH2 20 29 ØB 6000 10 8000 MH2 10 P P 90 8000 MH2 10 P P P 90 0 8000 MH2 10 P P 90 10 8000 MH2 10 P P 90	VŚWR	925.		960.			2.2	2.6			
905. io 915. MHz 12 17 dB +23 to +27 deg.C 980. to 1850. MHz 20 28 dB 1850. to 1250. MHz 20 28 dB 1920. to 2775. MHz 25 42 dB 2775. to 2880. MHz 25 44 dB 2800. to 277.5 MHz 25 44 dB 2800. to 277.5 MHz 20 29 dB 60000. to 8000. MHz 18 25 dB 900. to 10 10 10 10 900. to <t< td=""><td>Absolute Attenuation</td><td></td><td></td><td></td><td>MHz</td><td>30</td><td>35</td><td></td><td>dB</td><td></td></t<>	Absolute Attenuation				MHz	30	35		dB		
905. io 915. MHz 14 17 dB +23 to +27 deg.C 990. to 1850. MHz 30 52 dB 1920. to 775. MHz 26 42 dB 2775. to 2800. MHz 20 29 dB 2800. to 6000. MHz 20 29 dB 6000. to 6000. MHz 20 29 dB 6000. to 8000. MHz 18 25 dB 6000. to 18 14 14 14 14 7 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
980. 10 1850. MHz 20 28 dB 1920. 10 2775. MHz 25 42 dB 2775. 10 280. MHz 25 42 dB 2780. 10 6000. MHz 26 29 dB 2880. 10 6000. MHz 18 25 dB										+23 to +27deg.C	
1850. to 1920. MHz 30 52 dB 1920. to 2775. MHz 25 42 dB 2785. to 2800. MHz 20 29 dB 2880. to 60000. MHz 20 29 dB 6000. to 8000. MHz 18 25 dB 6000. to 8000. MHz 18 25 dB 6000. to 8000. MHz 18 26 dB 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7					MHz						
1920. 10 2775. MHz 25 42 dB 2880. MHz 20 29 dB 2880. 10 6000. MHz 20 29 dB 6000. 10 8000. MHz 18 25 dB 6000. 10 8000. MHz 18 18 18 7 8000. MHz 8000. MHz 18 18 <td< td=""><td></td><td>1850.</td><td></td><td></td><td>MHz</td><td></td><td>52</td><td></td><td></td><td></td></td<>		1850.			MHz		52				
2775. to 2880. MHz 20 29 dB 6000. ID 8000. MHz 18 25 dB 6000. ID ID ID ID ID ID 7000. ID ID ID ID ID ID ID 7000. ID ID ID ID ID ID ID ID 7000. ID ID ID ID ID ID ID ID					MHz						
2880. 10 6000. MHz 20 29 dB 6000. 10 8000. MHz 18 25 dB 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </td <td></td> <td></td> <td></td> <td>2880.</td> <td>MHz</td> <td></td> <td></td> <td></td> <td></td> <td></td>				2880.	MHz						
6000. MHz 18 25 dB Image: Constraint of the second s											
NNN <td></td> <td></td> <td></td> <td></td> <td>MHz</td> <td></td> <td></td> <td></td> <td></td> <td></td>					MHz						
Image: state of the state of		0000.	10	0000.		10	20		40		
Image: state of the state of											
Image: state of the state of											
Image: state of the state of											
Image: state of the state of											
Image: Section of the section of th											
Image: state of the state of											
Image: state of the state of											
Image: state of the state of											
Image: state of the state of											
Image: state of the state of											
Image: state of the state of											
Image: state of the state of											
Image: state of the state of											
Image: state of the state of											
Image: Section of the section of th											
Image: state of the state of											
Image: state of the state of											
Image: sector of the sector											
Image: state of the state of											
Image: state of the state of											
Image: state of the state of											
Image: state of the state of											
Image: sector of the sector											
Image: state of the state of											
Image: state of the state of											
Image: state of the state of											
Image: state of the state of											
Image: state of the state of											
Image: state of the state of											
Image: set of the											
Image: set of the											
Image: set of the											
Image: sector of the sector											
Image: state of the state of											
Image: Sector of the sector											
Image: Sector of the sector		<u> </u>									
Image: Sector of the sector											
Image: Sector of the sector											


* Typical value at 25±2deg.C

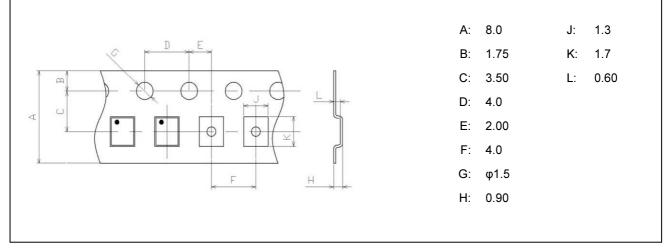
Electrical Characteristic

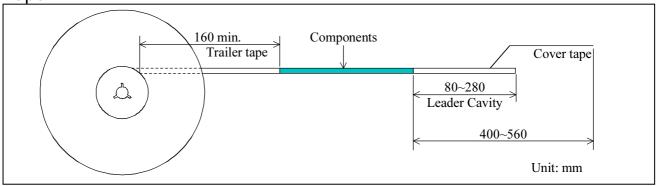


< Low Freq. Filter >

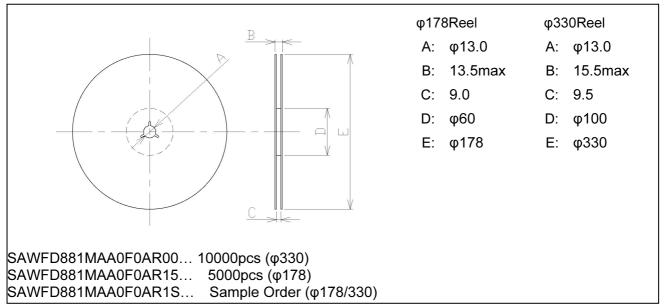


Electrical Characteristic


< High Freq. Filter >



Dimensions of Tape & Reel unit: mm


Carrier Tape

Tape

Reel

Important Notice (1/2)

PLEASE READ THIS NOTICE BEFORE USING OUR PRODUCTS.

Please make sure that your product has been evaluated and confirmed from the aspect of the fitness for the specifications of our product specified in the front page of this product specifications (the "Product" or "Products") when our Product is mounted to your product. All the items and parameters in this product specification/datasheet/catalog have been prescribed on the premise that our Product is used for the purpose, under the condition and in the environment specified in this specification. You are requested not to use our Product deviating from the condition and the environment specified in this specification.

Please note that the only warranty that we provide regarding the Product is its conformance to the specifications provided herein. Accordingly, we shall not be responsible for any defects in products or equipment incorporating such Products, which are caused under the conditions other than those specified in this specification.

WE HEREBY DISCLAIMS ALL OTHER WARRANTIES REGARDING THE PRODUCTS, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE, THAT THEY ARE DEFECT-FREE, OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS.

The Product shall not be used for any application which requires especially high reliability or accuracy in order to prevent defect which incurs high possibility of damage to the third party's life, body or property such as the applications listed below as item (a) to (j) (the "Prohibited Application"). You acknowledge and agree that, if you use our Products in the Prohibited Applications, we will not be responsible for any damage caused by such use.

Furthermore, YOU AGREE TO INDEMNIFY AND DEFEND US AND OUR AFFILIATES AGAINST ALL CLAIMS, DAMAGES, COSTS, AND EXPENSES THAT MAY BE INCURRED, INCLUDING WITHOUT LIMITATION, ATTORNEY FEES AND COSTS, DUE TO THE USE OF OUR PRODUCTS IN THE PROHIBITED APPLICATIONS.

- (a) Aircraft equipment.
- (b) Aerospace equipment
- (c) Undersea equipment.
- (d) Power plant control equipment
- (e) Medical equipment.
- (f) Transportation equipment (vehicles, automotive, trains, ships, etc.).
- (g)Traffic signal equipment.
- (h)Disaster prevention / crime prevention equipment.
- (i) Burning / explosion control equipment
- (j) Application of similar complexity and/ or reliability requirements to the applications listed in the above.

For the avoidance of doubt, the Product is not automotive grade, and will not support such requests for automotive as below, also not support other specific requests for automotive.

- AEC-Q200
- PPAP
- IATF16949,VDA6.3
- Zero Defect program
- Long product life cycle
- Automotive 8D failure analysis and report

Important Notice (2/2)

We expressly prohibit you from analyzing, breaking, Reverse-Engineering, remodeling altering, and reproducing our product. Our product cannot be used for the product which is prohibited from being manufactured, used, and sold by the regulations and laws in the world.

Please do not use the Product in molding condition.

This product is ESD (ElectroStatic Discharge) sensitive device. When you install or measure this, you should be careful not to add antistatic electricity or high voltage. Please be advised that you had better check anti serge voltage.

We do not warrant or represent that any license, either express or implied, is granted under any our patent right, copyright, mask work right, or our other intellectual property right relating to any combination, machine, or process in which our Products or services are used. Information provided by us regarding third-party products or services does not constitute a license from us to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from us under our patents or other intellectual property.

Please do not use our Products, our technical information and other data provided by us for the purpose of developing of mass-destruction weapons and the purpose of military use. Moreover, you must comply with "foreign exchange and foreign trade law", the "U.S. export administration regulations", etc.

Please note that we may discontinue the manufacture of our products, due to reasons such as end of supply of materials and/or components from our suppliers.

Customer acknowledges that Murata will, if requested by you, conduct a failure analysis for defect or alleged defect of Products only at the level required for consumer grade Products, and thus such analysis may not always be available or be in accordance with your request (for example, in cases where the defect was caused by components in Products supplied to Murata from a third party).

The Product shall not be used in any other application/model than that of claimed to Murata.

Customer acknowledges that engineering samples may deviate from specifications and may contain defects due to their development status.

We reject any liability or product warranty for engineering samples.

In particular we disclaim liability for damages caused by

•the use of the engineering sample other than for evaluation purposes, particularly the installation or integration in the Product to be sold by you,

·deviation or lapse in function of engineering sample,

• improper use of engineering samples.

We disclaim any liability for consequential and incidental damages. If you can't agree the above contents, you should inquire our sales.