

GENERAL DESCRIPTION

The 74ALVC164245 is a 16-bit dual-supply translating transceiver with 3-state outputs. It is CMOS device that features high-performance, low-power, low-voltage and surpasses most advanced CMOS compatible TTL series. The inputs from 3V and 5V make this device can be used as a translator in a mixed 3V and 5V system environment.

The device can be used as two 8-bit transceivers or as a 16-bit transceiver. The nAn and nBn are four 8-bit input and output ports. nDIR are the direction control inputs and $n\overline{OE}$ are the output-enable inputs. V_{CCA} and V_{CCB} are dual-supply pins. The supply voltage of V_{CCA} and V_{CCB} can range from 1.5V to 3.6V and 1.5V to 5.5V. nAn, $n\overline{OE}$ and nDIR are referenced to V_{CCA} and pins nBn are referenced to V_{CCB}.

When nDIR is set high, it allows transmission from nAn to nBn. When nDIR is set low, it allows transmission from nBn to nAn. When the output-enable $(n\overline{OE})$ input is high, both nAn and nBn ports are disabled by placing them in a high-impedance state.

In suspend mode, when V_{CCA} or V_{CCB} is 0V, there is no current flow from the non-zero supply to the zero supply. V_{CCA} must be less than or equal to V_{CCB} for proper device operation, except in suspend mode.

FEATURES

- V_{CCA} Supply Voltage Range: 1.5V to 3.6V
- V_{CCB} Supply Voltage Range: 1.5V to 5.5V
- Inputs Accept Voltages up to 5.5V
- Control Inputs Voltage Range: 2.7V to 5.5V
- CMOS Low Power Dissipation
- Direct Interface with TTL Levels
- Outputs in High-Impedance State when V_{CCA} or V_{CCB} = 0V
- -40°C to +125°C Operating Temperature Range
- Available in a Green TSSOP-48 Package

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
74ALVC164245	TSSOP-48	-40°C to +125°C	74ALVC164245XTS48G/TR	74ALVC164245 XTS48 XXXXX	Tape and Reel, 2500

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

<u>X X X X X</u>

Vendor Code
Trace Code

— Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Supply Voltage, V_{CCB} ($V_{CCB} \ge V_{CCA}$)
Supply Voltage, V_{CCB} ($V_{CCB} \ge V_{CCA}$)
Control Input Voltage, $V_1^{(2)}$ -0.5V to 6.5V
Input/Output Voltage, $V_{I/O}$ ⁽²⁾ 0.5V to (V_{CC} + 0.5V)
Output Voltage Range, Vo ⁽²⁾
High-Impedance State0.5V to 6.5V
High-State or Low-State
nAn ports0.5V to MIN (4.6V, V _{CCA} + 0.5V)
nBn ports0.5V to MIN (6.5V, V _{CCB} + 0.5V)
Input Clamping Current, I _{IK} (V _I < 0V)50mA
Output Clamping Current, I_{OK} (V _O > V _{CC} or V _O < 0V)
±50mA
Output Sink/Source Current, $I_{O(SINK/SOURCE)}$ (Vo = 0V to V _{CC})
±50mA
Supply Current, I _{CC}
Ground Current, I _{GND} 100mA
Junction Temperature ⁽³⁾ +150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering, 10s)+260°C
ESD Susceptibility
HBM
CDM

RECOMMENDED OPERATING CONDITIONS

Supply Voltage, V_{CCB} ($V_{CCB} \ge V_{CCA}$)
Maximum Speed Performance2.7V to 5.5V
Low-Voltage Applications1.5V to 5.5V
Supply Voltage, V _{CCA} (V _{CCB} ≥ V _{CCA})
Maximum Speed Performance2.7V to 3.6V
Low-Voltage Applications1.5V to 3.6V
Control Input Voltage (nOE and nDIR), V10V to 5.5V
Input/Output Voltage, V _{I/O}
nAn Ports0V to V_{CCA}
nBn Ports0V to V_{CCB}
Input Transition Rise and Fall Rate, $\Delta t / \Delta V$

V _{CCA} = 2.7V to 3.0V	20ns/V (MAX)
V _{CCA} = 3.0V to 3.6V	10ns/V (MAX)
$V_{CCB} = 3.0V$ to 4.5V	20ns/V (MAX)
V_{CCB} = 4.5V to 5.5V	
Operating Temperature Range.	-40°C to +125°C

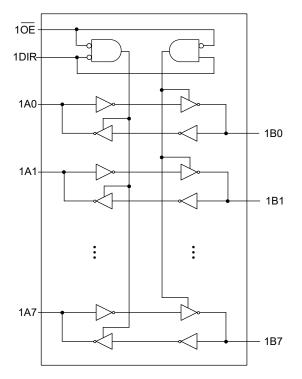
OVERSTRESS CAUTION

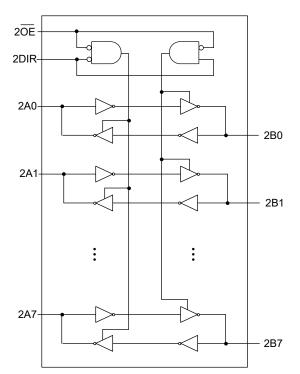
1. Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

2. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

3. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.

ESD SENSITIVITY CAUTION


This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.


DISCLAIMER

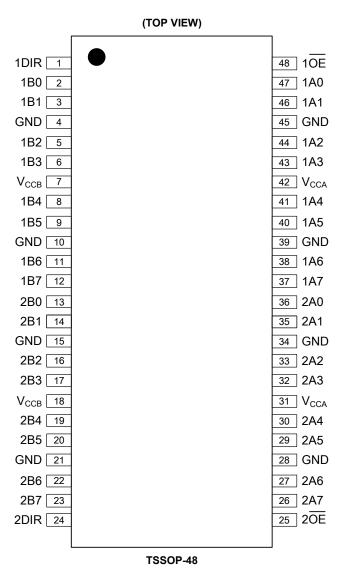
SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

LOGIC SYMBOL

FUNCTION TABLE

CONTRO	DL INPUT	INPUT/OUTPUT			
nOE	nDIR	nAn nBn			
L	L	nAn = nBn	Inputs		
L	Н	Inputs	nBn = nAn		
Н	X	Z	Z		

H = High Voltage Level


L = Low Voltage Level

Z = High-Impedance State

X = Don't Care

PIN CONFIGURATION

PIN DESCRIPTION

PIN	NAME	FUNCTION	
1, 24	1DIR, 2DIR	Direction Control Inputs.	
2, 3, 5, 6, 8, 9, 11, 12	1B0, 1B1, 1B2, 1B3, 1B4, 1B5, 1B6, 1B7	Data Inputs/Outputs.	
13, 14, 16, 17, 19, 20, 22, 23	2B0, 2B1, 2B2, 2B3, 2B4, 2B5, 2B6, 2B7	Data Inputs/Outputs.	
4, 10, 15, 21, 28, 34, 39, 45	GND	Ground.	
7, 18	V _{CCB}	Supply Voltage V _{CCB} (5V Bus).	
48, 25	10E, 20E	Output-Enable Inputs (Active Low).	
47, 46, 44, 43, 41, 40, 38, 37	1A0, 1A1, 1A2, 1A3, 1A4, 1A5, 1A6, 1A7	Data Inputs/Outputs.	
36, 35, 33, 32, 30, 29, 27, 26	2A0, 2A1, 2A2, 2A3, 2A4, 2A5, 2A6, 2A7	Data Inputs/Outputs.	
31, 42	V _{CCA}	Supply Voltage V _{CCA} (3V Bus).	

ELECTRICAL CHARACTERISTICS

(Full = -40°C to +125°C, all typical values are at V_{CCB} = 5.0V, V_{CCA} = 3.3V and T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	C	ONDITIONS	TEMP	MIN	TYP	MAX	UNITS
		nBn ports, V_{CCB} = 3.0V to 5.5V ⁽¹⁾		Full	2			
High-Level Input Voltage	V _{IH}	nAn ports, nOE_and nDIR	V _{CCA} = 3.0V to 3.6V	Full	2			V
			$V_{\rm CCA}$ = 2.3V to 2.7V ⁽¹⁾	Full	1.7			
		- Du un este	$V_{\rm CCB}$ = 4.5V to 5.5V ⁽¹⁾	Full			0.8	
	N/	nBn ports	V_{CCB} = 3.0V to 3.6V ⁽¹⁾	Full			0.7	
_ow-Level Input Voltage	V _{IL}	nAn ports,	V _{CCA} = 3.0V to 3.6V	Full			0.8	V
		nOE and nDIR	V_{CCA} = 2.3V to 2.7V ⁽¹⁾	Full			0.7	
			I _O = -24mA, V _{CCB} = 4.5V	Full	V _{CCB} - 0.6			
		nBn ports,	I _O = -12mA, V _{CCB} = 4.5V	Full	V _{CCB} - 0.3			
		$V_I = V_{IH}$	I _O = -18mA, V _{CCB} = 3.0V	Full	V _{CCB} - 0.6			
			$I_0 = -100 \mu A$, $V_{CCB} = 3.0 V$	Full	V _{CCB} - 0.05			
High-Level Output Voltage	V _{OH}		I _O = -24mA, V _{CCA} = 3.0V	Full	V _{CCA} - 0.8			
		nAn ports, V _I = V _{IH}	I _O = -100μΑ, V _{CCA} = 3.0V	Full	V _{CCA} - 0.05			
			I _O = -12mA, V _{CCA} = 2.7V	Full	V _{CCA} - 0.45			
			I_0 = -8mA, V_{CCA} = 2.3V	Full	V _{CCA} - 0.35			
			$I_0 = -100 \mu A$, $V_{CCA} = 2.3 V$	Full	V _{CCA} - 0.05			
		nBn ports, Vı = Vı⊾	I _O = 24mA, V _{CCB} = 4.5V	Full			0.6	- - - V
			$I_0 = 12mA, V_{CCB} = 4.5V$	Full			0.35	
			I _O = 100μA, V _{CCB} = 4.5V	Full			0.05	
			I _O = 18mA, V _{CCB} = 3.0V	Full			0.55	
aw Lavel Output Veltage			$I_0 = 100 \mu A$, $V_{CCB} = 3.0 V$	Full			0.05	
_ow-Level Output Voltage	Vol		I _o = 24mA, V _{CCA} = 3.0V	Full			0.7	
			I _O = 100μA, V _{CCA} = 3.0V	Full			0.05	
		nAn ports, V₁ = V _{IL}	I _O = 12mA, V _{CCA} = 2.7V	Full			0.4	
			I _o = 12mA, V _{CCA} = 2.3V	Full			0.45	
			I _O = 100μΑ, V _{CCA} = 2.3V	Full			0.05	
nput Leakage Current	li li	V ₁ = 5.5V or GNI	כ	Full		±0.1	2	μA
Off-State Output Current (1)	I _{oz}	$V_{I} = V_{IH}$ or V_{IL} , $V_{O} = V_{CC}$ or GND		Full		±0.1	5	μA
Supply Current	I _{cc}	$V_1 = V_{CC}$ or GND	· · ·	Full		0.1	10	μA
Additional Supply Current	ΔI _{cc}	Any one data inpotential of the the set of the set V_{CC} or	out at V _{CC} - 0.6V, GND, I _O = 0A	Full		0.1	20	μA
nput Capacitance	Cı			+25°C		4		pF
nput/Output Capacitance	CI/O	nAn and nBn po	rts	+25°C		5		pF

NOTE:

1. For I/O ports, the parameter I_{OZ} includes the input leakage current.

DYNAMIC CHARACTERISTICS

(For test circuit, see Figure 1. All typical values are measured at V_{CCB} = 5.0V, V_{CCA} = 3.3V and T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL		CONDITIONS	TEMP	MIN	TYP	MAX	UNITS	
			$V_{\rm CCA}$ = 2.3V to 2.7V, $V_{\rm CCB}$ = 3.0V to 3.6V	+25°C		6.2			
		nAn to nBn, see Figure 2	V_{CCA} = 2.7V, V_{CCB} = 4.5V to 5.5V	+25°C		5			
Dran a nation Dalay (1)			V_{CCA} = 3.0V to 3.6V, V_{CCB} = 4.5V to 5.5V	+25°C		4.7			
Propagation Delay ⁽¹⁾	t _{PD}		V_{CCA} = 2.3V to 2.7V, V_{CCB} = 3.0V to 3.6V	+25°C		5.9		ns	
		nBn to nAn, see Figure 2	V_{CCA} = 2.7V, V_{CCB} = 4.5V to 5.5V	+25°C		4.7			
			V_{CCA} = 3.0V to 3.6V, V_{CCB} = 4.5V to 5.5V	+25°C		4.5			
			V_{CCA} = 2.3V to 2.7V, V_{CCB} = 3.0V to 3.6V	+25°C		6.3			
		nOE to nBn, see Figure 3	V_{CCA} = 2.7V, V_{CCB} = 4.5V to 5.5V	+25°C		5		ns	
		see rigure 5	V_{CCA} = 3.0V to 3.6V, V_{CCB} = 4.5V to 5.5V	+25°C		4.6			
Enable Time ⁽¹⁾	t _{EN}	nOE to nAn, see Figure 3	V_{CCA} = 2.3V to 2.7V, V_{CCB} = 3.0V to 3.6V	+25°C		8			
			V _{CCA} = 2.7V, V _{CCB} = 4.5V to 5.5V	+25°C		6.6			
			V_{CCA} = 3.0V to 3.6V, V_{CCB} = 4.5V to 5.5V	+25°C		5.8			
		nOE to nBn, see Figure 3	V_{CCA} = 2.3V to 2.7V, V_{CCB} = 3.0V to 3.6V	+25°C		6.7			
			V_{CCA} = 2.7V, V_{CCB} = 4.5V to 5.5V	+25°C		6.8		ns	
Disable Time ⁽¹⁾			V_{CCA} = 3.0V to 3.6V, V_{CCB} = 4.5V to 5.5V	+25°C		7.8			
Disable Time V	t _{DIS}		V_{CCA} = 2.3V to 2.7V, V_{CCB} = 3.0V to 3.6V	+25°C		7.7			
		nOE to nAn, see Figure 3	V _{CCA} = 2.7V, V _{CCB} = 4.5V to 5.5V	+25°C		7.3			
		See Figure o	V_{CCA} = 3.0V to 3.6V, V_{CCB} = 4.5V to 5.5V	+25°C		6.5			
Power Dissipation		Outputs enabled	5V port: nAn to nBn, V_1 = GND to V_{CC} ,	+25°C		15			
		Outputs disabled	$V_{CCB} = 5V, V_{CCA} = 3.3V$	+25°C		5		5	
Capacitance ⁽²⁾	C _{PD}	Outputs enabled	3V port: nBn to nAn, V_1 = GND to V_{CC} ,	+25°C		15		pF	
		Outputs disabled	$V_{\rm CCB} = 5V, V_{\rm CCA} = 3.3V$	+25°C		5			

NOTES:

1. t_{PD} is the same as t_{PLH} and t_{PHL} . t_{EN} is the same as t_{PZL} and t_{PZH} . t_{DIS} is the same as t_{PLZ} and t_{PHZ} .

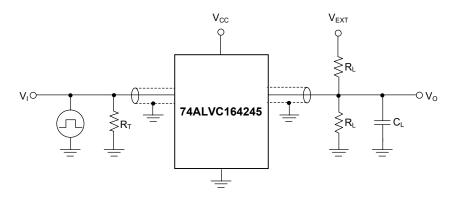
2. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o})$ where:

 f_i = Input frequency in MHz.

 f_o = Output frequency in MHz.

 C_L = Output load capacitance in pF.


V_{CC} = Supply voltage in Volts.

N = Number of inputs switching.

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = Sum of the outputs.

TEST CIRCUIT

Test conditions are given in Table 1.

Definitions for test circuit:

R_L: Load resistance.

 $C_{\mbox{\scriptsize L}}$: Load capacitance (includes jig and probe).

 R_T : Termination resistance (equals to output impedance Z_0 of the pulse generator).

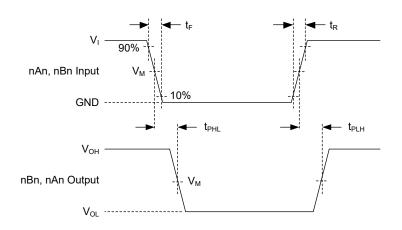
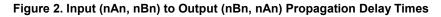
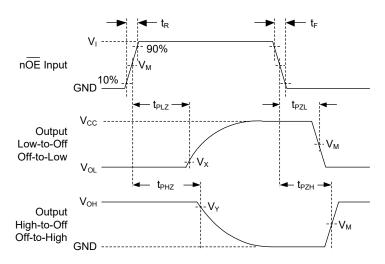

 V_{EXT} : External voltage used to measure switching time.

Figure 1. Test Circuit for Measuring Switching Times

Table 1. Test Conditions

DIRECTION	SUPPLY	/OLTAGE	LO	AD	V _{EXT}			
DIRECTION	V _{CCA}	V _{CCB}	C∟	RL	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}	
nAn ports to nBn ports	2.3V to 2.7V	2.7V to 3.6V	50pF	500Ω	Open	GND	2 × V _{CC}	
nBn ports to nAn ports	2.3V to 2.7V	2.7V to 3.6V	50pF	500Ω	Open	GND	6.0V	
nAn ports to nBn ports	2.7V to 3.6V	4.5V to 5.5V	50pF	500Ω	Open	GND	2 × V _{CC}	
nBn ports to nAn ports	2.7V to 3.6V	4.5V to 5.5V	50pF	500Ω	Open	GND	6.0V	


WAVEFORMS



Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 3. Enable and Disable Times

Table 2. Measurement Points

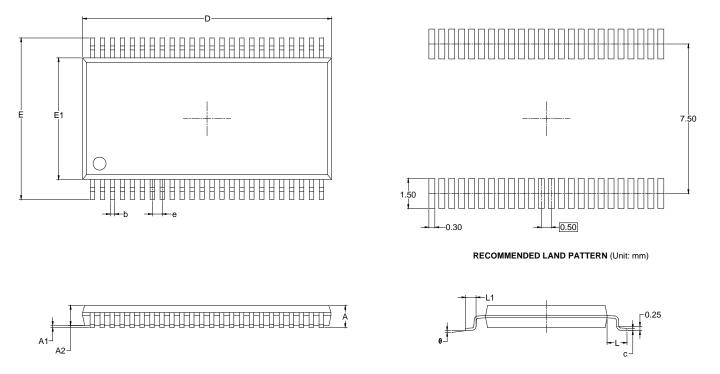
DIRECTION	SUPPLY VOLTAGE		INPUT			OUTPUT		
DIRECTION	V _{CCA}	V _{CCB}	Vı	V _M ⁽¹⁾	t _R , t _F	V _M	Vx	V _Y
nAn ports to nBn ports	2.3V to 2.7V	2.7V to 3.6V	V _{CCA}	$0.5 \times V_{CCA}$	≤ 2.5ns	1.5V	V_{OLB} + 0.3V	V _{ОНВ} - 0.3V
nBn ports to nAn ports	2.3V to 2.7V	2.7V to 3.6V	2.7V	1.5V	≤ 2.5ns	$0.5 \times V_{CCA}$	V _{OLA} + 0.15V	V _{OHA} - 0.15V
nAn ports to nBn ports	2.7V to 3.6V	4.5V to 5.5V	2.7V	1.5V	≤ 2.5ns	0.5 × V _{CCB}	0.2 × V _{CCB}	$0.8 \times V_{CCB}$
nBn ports to nAn ports	2.7V to 3.6V	4.5V to 5.5V	3.0V	1.5V	≤ 2.5ns	1.5V	V _{OLA} + 0.3V	V _{OHA} - 0.3V

NOTE: The measurement points should be V_{IH} or V_{IL} when the input rising or falling times exceeds 2.5ns.

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (SEPTEMBER 2021) to REV.A

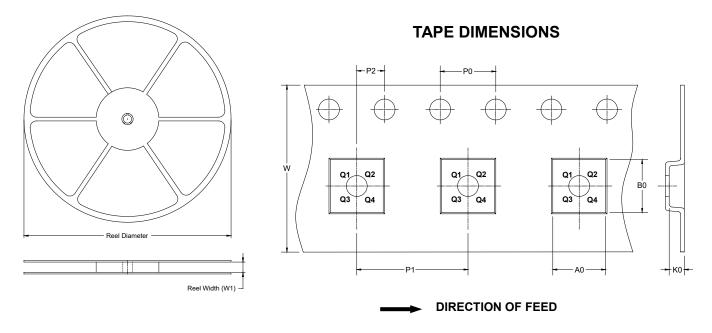

Changed from product preview to production dataAll	

Page

PACKAGE OUTLINE DIMENSIONS

TSSOP-48

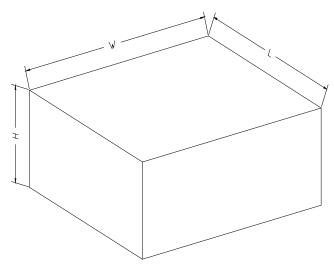
Symbol	Dimensions In Millimeters						
Symbol	MIN	MOD	MAX				
A			1.20				
A1	0.05	0.10	0.15				
A2	0.85	0.95	1.05				
b	0.18		0.26				
С	0.15		0.19				
D	12.40	12.50	12.60				
E	7.90	8.10	8.30				
E1	6.00	6.10	6.20				
е	0.50 BSC						
L	1.00 REF						
L1	0.45		0.75				
θ	0°	8°					


NOTES: 1. Body dimensions do not include mode flash or protrusion.

2. This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TSSOP-48	13″	24.4	8.60	13.00	1.80	4.0	12.0	2.0	24.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
13″	386	280	370	5	DD0002

