

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)

• Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

DECADE COUNTER; DIVIDE-BY-TWELVE COUNTER; 4-BIT BINARY COUNTER

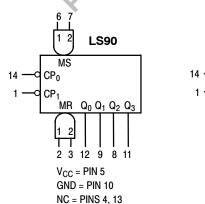
The SN54/74LS90, SN54/74LS92 and SN54/74LS93 are high-speed 4-bit ripple type counters partitioned into two sections. Each counter has a divide-by-two section and either a divide-by-five (LS90), divide-by-six (LS92) or divide-by-eight (LS93) section which are triggered by a HIGH-to-LOW transition on the clock inputs. Each section can be used separately or tied together (Q to \overline{CP}) to form BCD, bi-quinary, modulo-12, or modulo-16 counters. All of the counters have a 2-input gated Master Reset (Clear), and the LS90 also has a 2-input gated Master Set (Preset 9).

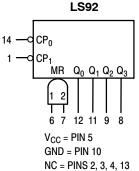
ON Semiconductor®

http://onsemi.com

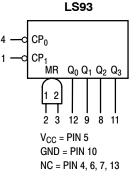
DECADE COUNTER; DIVIDE-BY-TWELVE COUNTER; 4-BIT BINARY COUNTER LOW POWER SCHOTTKY

J SUFFIX CERAMIC


CASE 632-08


- Low Power Consumption . . . Typically 45 mW
- High Count Rates . . . Typically 42 MHz
- Choice of Counting Modes . . . BCD, Bi-Quinary, Divide-by-Twelve, Binary
- Input Clamp Diodes Limit High Speed Termination Effects

PIN NAMES	S LOADING (Note a)	Pri
	HIGH CLOW	
CP ₀	Clock (Active LOW going edge) Input to 0.5 U.L. 1.5 U.L. +2 Section	N SUFFIX PLASTIC
CP ₁	Clock (Active LOW going edge) Input to 0.5 U.L. 2.0 U.L. 14	CASE 646-06
CP ₁	Clock (Active LOW going edge) Input to 0.5 U.L. 1.0 U.L. +8 Section (LS93)	
MR_1, MR_2	Master Reset (Clear) Inputs 0.5 U.L. 0.25 U.L.	
MS ₁ , MS ₂	Master Set (Preset-9, LS90) Inputs 0.5 U.L. 0.25 U.L.	D SUFFIX
Q ₀	Output from +2 Section (Notes b & c) 10 U.L. 5 (2.5) U.L. 14	SOIC
Q ₁ , Q ₂ , Q ₃	Outputs from ÷5 (LS90), ÷6 (LS92), 10 U.L. 5 (2.5) U.L.	1 CASE 751A-02
	□+8 (LS93) Sections (Note b)	

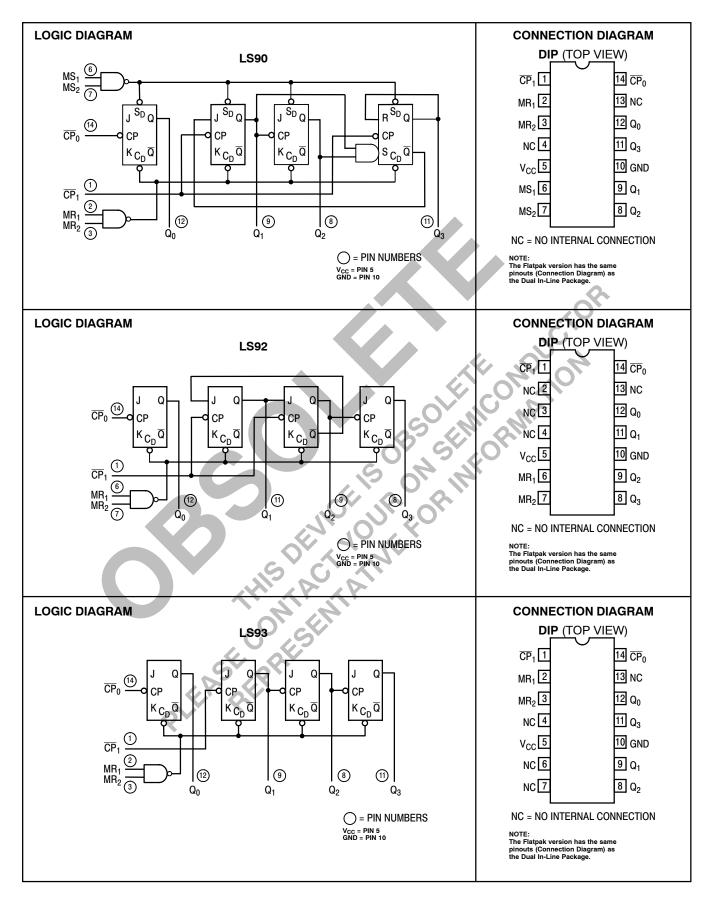

NOTES:

- a. 1 TTL Unit Load (U.L.) = 40 μ A HIGH/1.6 mA LOW.
- b. The Output LOW drive factor is 2.5 U.L. for Military, (54) and 5 U.L. for commercial (74) Temperature Ranges.
- c. The Q_0 Outputs are guaranteed to drive the full fan-out plus the \overline{CP}_1 input of the device.
- d. To insure proper operation the rise (t_f) and fall time (t_f) of the clock must be less than 100 ns.

LOGIC SYMBOL

ORDERING INFORMATION

Ceramic


Plastic

SOIC

SN54LSXXJ

SN74LSXXN

SN74LSXXD

FUNCTIONAL DESCRIPTION

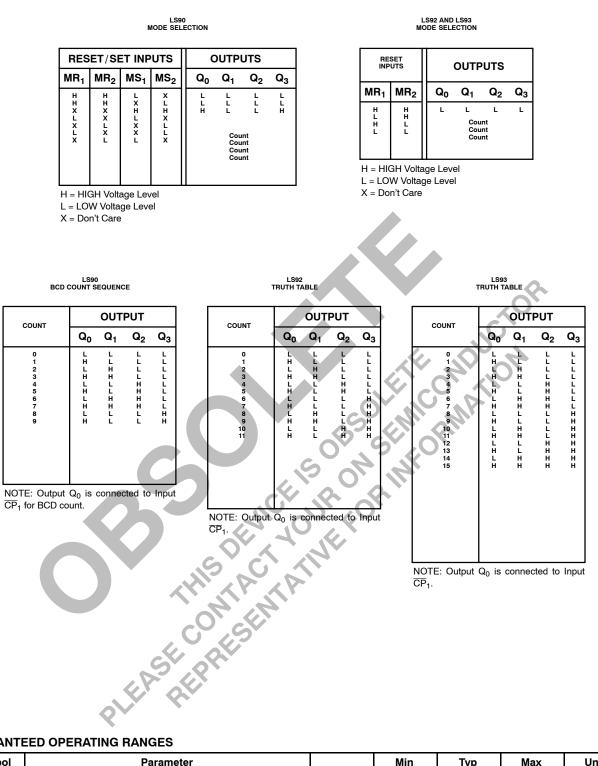
The LS90, LS92, and LS93 are 4-bit ripple type Decade, Divide-By-Twelve, and Binary Counters respectively. Each device consists of four master/slave flip-flops which are internally connected to provide a divide-by-two section and a divide-by-five (LS90), divide-by-six (LS92), or divide-by-eight (LS93) section. Each section has a separate clock input which initiates state changes of the counter on the HIGH-to-LOW clock transition. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used for clocks or strobes. The Q0 output of each device is designed and specified to drive the rated fan-out plus the \overline{CP}_1 input of the device.

A gated AND asynchronous Master Reset (MR1 • MR2) is provided on all counters which overrides and clocks and resets (clears) all the flip-flops. A gated AND asynchronous Master Set (MS1 • MS2) is provided on the LS90 which overrides the clocks and the MR inputs and sets the outputs to nine (HLLH).

Since the output from the divide-by-two section is not internally connected to the succeeding stages, the devices may be operated in various counting modes.

LS90

- A. BCD Decade (8421) Counter The CP₁ input must be externally connected to the Q_0 output. The \overline{CP}_0 input receives the incoming count and a BCD count sequence is produced.
- te and ihe and a at Q₀. B. Symmetrical Bi-quinary Divide-By-Ten Counter - The Q₃ output must be externally connected to the \overline{CP}_0 input. The input count is then applied to the CP1 input and a divide-by-ten square wave is obtained at output Q0


C. Divide-By-Two and Divide-By-Five Counter - No external interconnections are required. The first flip-flop is used as a binary element for the divide-by-two function $(\overline{CP}_0$ as the input and Q_0 as the output). The \overline{CP}_1 input is used to obtain binary divide-by-five operation at the Q3 output.

LS92

- A. Modulo 12, Divide-By-Twelve Counter The \overline{CP}_1 input must be externally connected to the Q_0 output. The \overline{CP}_0 input receives the incoming count and Q₃ produces a symmetrical divide-by-twelve square wave output.
- B. Divide-By-Two and Divide-By-Six Counter No external interconnections are required. The first flip-flop is used as a binary element for the divide-by-two function. The \overline{CP}_1 input is used to obtain divide-by-three operation at the Q1 and Q₂ outputs and divide-by-six operation at the Q₃ output.

LS93

- A. 4-Bit Ripple Counter The output Q0 must be externally connected to input \overline{CP}_1 . The input count pulses are applied to input \overline{CP}_0 . Simultaneous divisions of 2, 4, 8, and 16 are performed at the Q0, Q1, Q2, and Q3 outputs as shown in the truth table.
- B. 3-Bit Ripple Counter-The input count pulses are applied to input \overline{CP}_1 . Simultaneous frequency divisions of 2, 4, and 8 are available at the Q_1 , Q_2 , and Q_3 outputs. Independent use of the first flip-flop is available if the reset function coincides with reset of the 3-bit ripple-through

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
V _{CC}	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
T _A	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
I _{OH}	Output Current — High	54, 74			-0.4	mA
I _{OL}	Output Current — Low	54 74			4.0 8.0	mA

			Limits						
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions			
√ _{IH}	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs		
V _{IL}	Input LOW Voltage	54			0.7	V	Guaranteed Input LOW Voltage for All Inputs		
V _{IK}	Input Clamp Diode Voltage	74		-0.65	0.8 -1.5	V	$V_{CC} = MIN, I_{IN} = -18 \text{ mA}$		
▼ IK		54	2.5	3.5	-1.5	V			
V _{OH}	Output HIGH Voltage	74	2.7	3.5		V	$\label{eq:VCC} \begin{array}{l} V_{CC} = MIN, \ I_{OH} = MAX, \ V_{IN} = V_{IH} \\ \text{or } V_{IL} \ \text{per Truth Table} \end{array}$		
N/		54, 74		0.25	0.4	V	$I_{OL} = 4.0 \text{ mA}$ $V_{CC} = V_{CC} \text{ MIN}$		
V _{OL}	Output LOW Voltage	74		0.35	0.5	V	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OL} = 8.0 \text{ mA}$ per Truth Table		
IIH	Input HIGH Current				20	μΑ	V _{CC} = MAX, V _{IN} = 2.7 V		
					0.1	mA	V_{CC} = MAX, V_{IN} = 7.0 V		
l _{IL}	Input LOW Current MS, MR CP ₀ CP ₁ (LS90, LS92) CP ₁ (LS93)				-0.4 -2.4 -3.2 -1.6	mA	V _{CC} = MAX, V _{IN} = 0.4 V		
l _{os}	Short Circuit Current (Note 1)		-20		-100	mA	V _{CC} = MAX		
I _{CC}	Power Supply Current				15	mA	V _{CC} = MAX		
	MS, MR CP ₀ CP ₁ (LS90, LS92) CP ₁ (LS93) Short Circuit Current (Note 1) Power Supply Current ore than one output should be shorted at a time,	DEN		SOR	5M FOR	INF)`		

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

AC CHARACTERISTICS (T_A = 25°C, V_{CC} = 5.0 V, C_L = 15 pF)

			Limits								
			LS90			LS92			LS93		
Symbol	Parameter	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{MAX}	CP ₀ Input Clock Frequency	32			32			32			MHz
f _{MAX}	CP ₁ Input Clock Frequency	16			16			16			MHz
t _{PLH} t _{PHL}	Propagation Delay, \overline{CP}_0 Input to Q_0 Output		10 12	16 18		10 12	16 18		10 12	16 18	ns
t _{PLH} t _{PHL}	CP ₀ Input to Q ₃ Output		32 34	48 50		32 34	48 50		46 46	70 70	ns
t _{PLH} t _{PHL}	CP ₁ Input to Q ₁ Output		10 14	16 21		10 14	16 21		10 14	16 21	ns
t _{PLH} t _{PHL}	\overline{CP}_1 Input to Q_2 Output		21 23	32 35		10 14	16 21		21 23	32 35	ns
t _{PLH} t _{PHL}	CP ₁ Input to Q ₃ Output		21 23	32 35		21 23	32 35		34 34	51 51	ns
t _{PLH}	MS Input to Q_0 and Q_3 Outputs		20	30					\sim		ns
t _{PHL}	MS Input to Q ₁ and Q ₂ Outputs		26	40							ns
t _{PHL}	MR Input to Any Output		26	40		26	40		26	40	ns

		Limits						
		LS	90	LS	92	LS93		
Symbol	Parameter	Min	Max	Min	Мах	Min	Max	Unit
t _W	CP ₀ Pulse Width	15	S	15	K	15		ns
t _W	CP ₁ Pulse Width	30		30		30		ns
t _W	MS Pulse Width	15		~				ns
t _W	MR Pulse Width	15		15		15		ns
t _{rec}	Recovery Time MR to CP	25		25		25		ns

RECOVERY TIME (trec) is defined as the minimum time required between the end of the reset pulse and the clock transition from HIGH-to-LOW in order to recognize and transfer HIGH data to the Q outputs

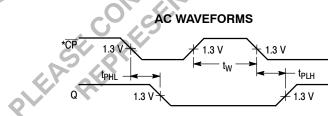
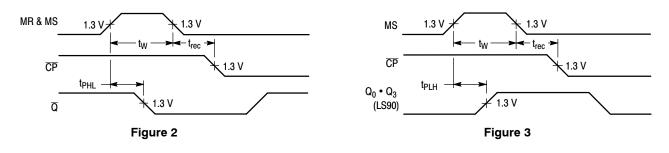



Figure 1

*The number of Clock Pulses required between the tPHL and tPLH measurements can be determined from the appropriate Truth Tables.

ON Semiconductor and I are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use personse, and reasonable attorney fees andising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized to application engine to the gard in sub-solit core respondent of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative