LM5160A, LM5160 Buck EVM User's Guide

User's Guide

Literature Number: SNVU441B October 2014–Revised April 2015

Contents

1	Introdu	iction	4
2	Backgr	ound	4
3	Setup.		4
	3.1	Input/Output Connector Description	4
	3.2	* [* * * * * * * * * * * * * * * * * *	
	3.3	FPWM Mode Selection	5
4	Board	Layout	5
5	Schematic		6
6	LM516	ODNTBKEVM Bill of Materials for 300 kHz Configuration	7
7	Performance Curves with LM5160A, LM5160		
Revi	sion Hist	orv	10

www.ti.com

List of Figures

1	EVM Component View with LM5160A	5
2	EVM Top Copper View with LM5160A	5
3	EVM Bottom Copper View with LM5160A	5
4	EVM Top Solder Mask with LM5160A	5
5	Buck EVM Schematic with LM5160	6
6	Load Regulation	7
7	Efficiency vs. I _{OUT}	7
8	Efficiency vs. V _{IN}	7
9	Efficiency DCM vs. CCM at 300kHz	7
10	V _{IN} = 48V and FPWM = 0 at no load	7
11	V _{IN} = 48V and FPWM = 0 at no load (Zoomed)	7
12	V _{IN} = 48V and FPWM = 1 at no load	8
13	Load Transient (I _O = 300mA to 1.5A)	8
14	Startup at $R_{LOAD} = 3\Omega$	8
15	Pre-Bias Startup at R_{LOAD} = 3 Ω and V_{IN} = 48 V	8
16	EN/UVLO Startup at $R_{LOAD} = 5\Omega$ and $V_{IN} = 24V$	8
17	EN/UVLO Startup at R_{LOAD} = 100 Ω and V_{IN} = 24 V	8
18	Output Short-Circuit at V _{IN} = 48V	9
	List of Tables	
1	Board Specification	4
2	FPWM Pin Mode	5

LM5160A, LM5160 User's Guide

1 Introduction

The Texas Instruments LM5160DNTBKEVM evaluation module (EVM) helps designers evaluate the operation and performance of the LM5160A / LM5160 synchronous buck regulator IC in a synchronous Buck configuration. It also includes the specification for the board, complete application schematic, bill of materials (BOM), setup instructions, and typical performance curves.

2 Background

The LM5160DNTBKEVM evaluation board provides a fully functional buck regulator, employing the constant on-time (COT) operating principle. This evaluation board provides a 5-V output over an input voltage range of 10 V to 60 V. The circuit delivers load current up to 1.5 A. The application schematic is setup up to operate from a 24 V nominal bus. The nominal switching frequency is approximately 300 kHz. The LM5160 device name is used generically throughout this document and represents both the LM5160 and LM5160A unless stated otherwise. The only difference between the two is the ability to connect an external voltage source to the VCC pin of the LM5160A. The board is designed to demonstrate a small buck solution size for low power wide $V_{\rm IN}$ applications.

Table 1. Board Specification

EVM	INPUT	V _{out}	I _{оит}
LM5160DNTBKEVM	VIN=10V-60V	5V	0–1.5A

3 Setup

This section describes the connectors, the test points and the jumper on the EVM as well as how to properly connect and use the LM5160DNTBKEVM with the LM5160, unless stated otherwise.

3.1 Input/Output Connector Description

- **J1 Input** is the power input terminal for the converter. The terminal block provides an input V_{IN} (+) and ground (-) connection to allow the user to attach the EVM to a power supply.
- **J2 Output** is the regulated output voltage for the converter. The terminal block provides a V_{OUT} (+) and ground (-) connection to allow the user to attach the EVM to a load.
- **TP1 (EN)** allows the user to remotely shutdown/startup LM5160 while operating in the buck mode. EN circuitry is not populated on EVM.
- **TP2 (SW)** allows the user to connect a scope probe to observe the switch node of the converter.
- **JP1 Mode** pin allows the user to select between the forced CCM and the DCM operation.

3.2 Operation

For proper operation of the LM5160 Buck converter, the input voltage applied across J1 should be gradually increased. The load on the output (J2) should not exceed 1.5 A. The inductor L1 utilized in this board is optimized for small solution size. The saturation current rating (I_{SAT}) of the inductor should be higher than the LM5160 integrated high side FET peak current-limit threshold of 2.875 A (max.).

The nominal switching frequency can be set using the $R_{\rm ON}$ (R3 in the EVM) resistor as shown by Equation 1:

Setup www.ti.com

$$F_{sw} = \frac{V_{OUT}}{R_{ON} \times 1 \times 10^{-10}} \, Hz \tag{1}$$

The output voltage is set by using the feedback divider resistors R7 (R_{FB1}) and R6 (R_{FB2}) in the EVM by using Equation 2:

$$\frac{R_{FB2}}{R_{FB1}} = \frac{V_{OUT}}{V_{REF}} - 1 \tag{2}$$

The EN/UVLO resistors R2 (R_{UV1}) and R1 (R_{UV2}) in the EVM set the input under-voltage lockout threshold and hysteresis according to Equation 3:

$$V_{IN(HYS)} = I_{UVLO(HYS)} \times R_{UV2}$$
(3)

and,

$$V_{IN, UVLO(rising)} = V_{UVLO(TH)} \left(1 + \frac{R_{UV2}}{R_{UV1}} \right)$$
(4)

3.3 FPWM Mode Selection

Use the FPWM pin to select between the continuous conduction mode (CCM) and the discontinuous conduction mode (DCM) of operation. Table 1 summarizes the LM5160NDTBKEVM Jumper (JP1) settings that are chosen to activate the desired mode of operation. Refer to the LM5160 datasheet (SNVSA03A) for more detailed information regarding the FPWM mode selection.

Table 2. FPWM Pin Mode

JP1 Shunt Setting	Logic Stage	Description
DCM or Floating (High Z)	0	The FPWM pin is grounded or left floating. DCM enabled at light loads.
FPWM (VCC)	1	The FPWM pin is connected to VCC. Enables CCM at light loads.

4 **Board Layout**

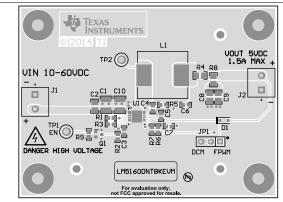


Figure 1. EVM Component View with LM5160A

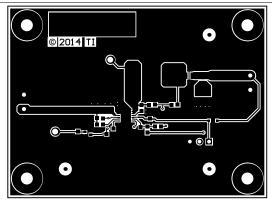
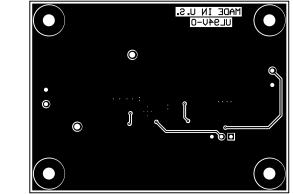
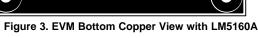




Figure 2. EVM Top Copper View with LM5160A

Schematic www.ti.com

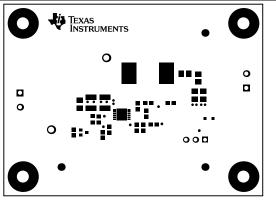


Figure 4. EVM Top Solder Mask with LM5160A

Figure 1 to Figure 4 show the board layout for the LM5160DNTBKEVM PCB. The WSON-12 package allows a compact leadless IC package buck regulator solution. The LM5160DNTBKEVM is a simple two layer board. In this EVM, the necessary feedback ripple voltage (V_{FB}) required for stable COT operation over the entire input voltage range is generated by the inductor current flowing through the resistor, R_{ESR} (R8 as shown in Figure 1). This is the least component, minimum cost ripple configuration. There are placeholders in the EVM (R7, C6, and C7) which can be populated as required, for the minimum ripple injection network. If this external ripple configuration is used, substitute R8 with a 0 Ω (0805) resistor. Calculate these component values based on the formulae mentioned under Type 3 ripple configuration in the LM5160, LM5160A Datasheet (SNVSA03A). See application note AN-1481 for more details for each ripple generation method.

5 Schematic

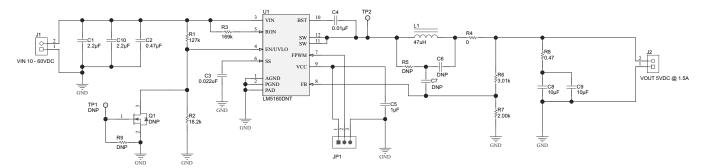
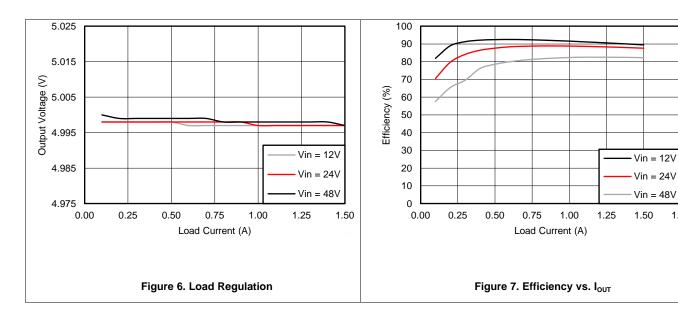
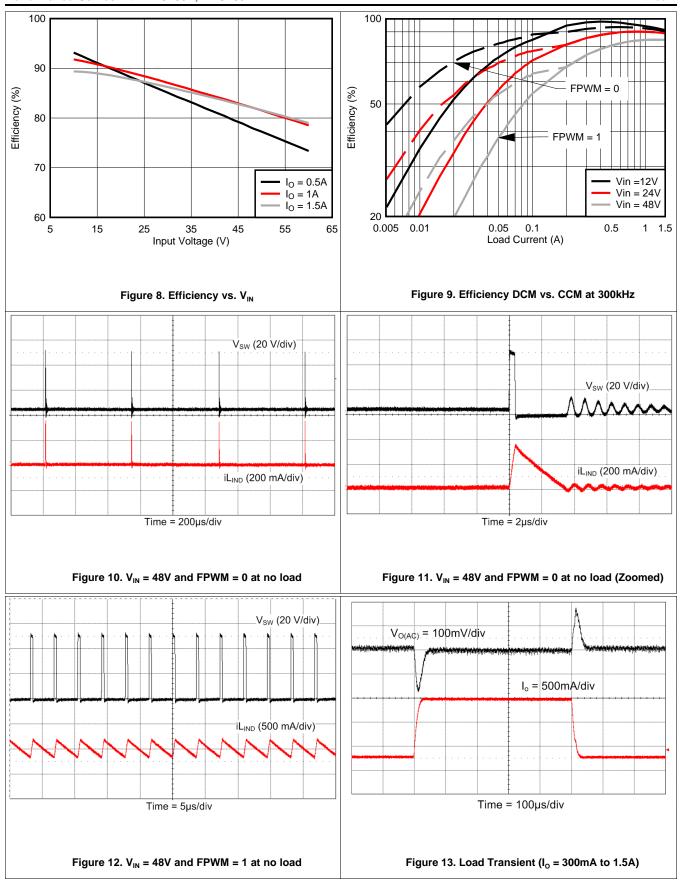


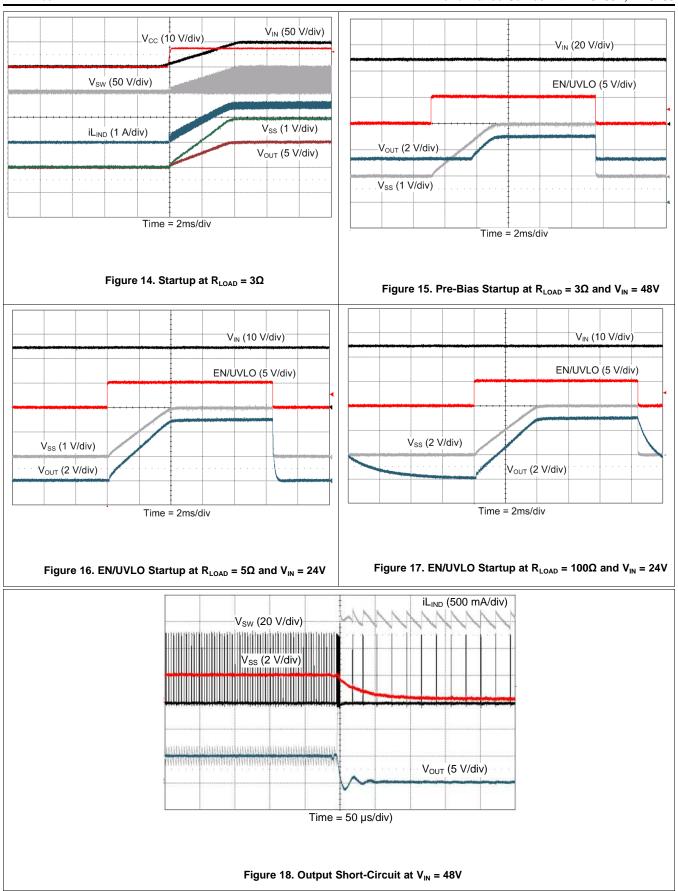
Figure 5. Buck EVM Schematic with LM5160


When/If used with LM5160, the placeholder for D1 as in Figure 1, must remain unpopulated under all cases. When evaluating the LM5160A, the designer needs to use the same standard EVM by replacing the LM5160 IC (when/if populated) with the LM5160A. No other components on board need to be replaced or removed. With LM5160A IC, the designer can use other nominal output voltage (V_{OUT}), set between 9 V and 13 V, to externally drive the V_{CC} for improved efficiency requirement. In that case, the diode in placeholder D1 can be appropriately populated, to the correct voltage ratings. More detail is given in Section 6 in the Bill of Materials. For more information about the difference between LM5160A and LM5160, please refer to the LM5160 Datasheet (SNVSA03A).

6 LM5160DNTBKEVM Bill of Materials for 300 kHz Configuration


ITEM	DESCRIPTION	MFG. PART NUMBER	PACKAGE	VALUE
C1, C10	Ceramic Capacitor	Murata GRM32ER72A225KA35L	1210	2.2µF, 100V, ±10%, X7R
C2	Ceramic Capacitor	Murata GRM21BR72A474KA73L	0805	0.47μF, 100V, ±10%, X7R
C3	Ceramic Capacitor	Murata GRM188R71C223KA01D	0603	0.022μF, 16V, ±10%, X7R
C4	Ceramic Capacitor	Murata GRM188R71C103KA01D	0603	0.01μF, 16V, ±10%, X7R
C5	Ceramic Capacitor	Murata GRM188R71E105KA12D	0603	1µF, 25V, ±10%, X7R
C8, C9	Ceramic Capacitor	Murata GRM21BR71A106KE51L	0805	10μF, 10V, ±10%, X7R
JP1	Header	Sullins Connector PEC03SAAN		3x1, Tin plated
L1	Inductor	Coiltronics DR125-470-R	10mm x 12.5mm	47μH, 2.71A, 0.074 Ω, SMD
R1	Resistor	Yageo America RC0603FR-07127KL	0603	127 kΩ, 1%, 0.1W
R2	Resistor	Vishay-Dale CRCW060318K2FKEA	0603	18.2 kΩ, 1%, 0.1W
R3	Resistor	Yageo America RC0603FR-07169KL	0603	169 kΩ, 1%, 0.1W
R4	Resistor	Yageo America RC0805JR-070RL	0805	0 Ω, 5%, 0.125W
R6	Resistor	Vishay-Dale CRCW06033K01FKEA	0603	3.01 kΩ, 1%, 0.1W
R7	Resistor	Vishay-Dale CRCW06032K00FKEA	0603	2.00 kΩ, 1%, 0.1W
R8	Resistor	Panasonic ERJ-6RQFR47V	0805	0.47 Ω, 1%, 0.125W
U1	Switching Regulator	Texas Instruments LM5160ADNT	WSON-12	
R5	Resistor	Unpopulated	0603	
R9	Resistor	Unpopulated	0603	18.2 kΩ, 1%, 0.1W
C6	Ceramic Capacitor	Unpopulated	0603	
C7	Ceramic Capacitor	Unpopulated	0603	
D1	Schottky Diode (Use with LM5160A only)	Diodes Inc. B0530W-7-F (Unpopulated)	SOD-123	30 V, 0.5 A
Q1	MOSFET	Unpopulated	SOT-323	N-CH, 50V, 0.2A

7 Performance Curves with LM5160A, LM5160



1.75

Revision History www.ti.com

Revision History

Changes from A Revision (February 2015) to B Revision		
•	Added information for LM5160A EVM	4
•	Added updated EVM views with LM5160A	5

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

STANDARD TERMS AND CONDITIONS FOR EVALUATION MODULES

- 1. Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components, or documentation (collectively, an "EVM" or "EVMs") to the User ("User") in accordance with the terms and conditions set forth herein. Acceptance of the EVM is expressly subject to the following terms and conditions.
 - 1.1 EVMs are intended solely for product or software developers for use in a research and development setting to facilitate feasibility evaluation, experimentation, or scientific analysis of TI semiconductors products. EVMs have no direct function and are not finished products. EVMs shall not be directly or indirectly assembled as a part or subassembly in any finished product. For clarification, any software or software tools provided with the EVM ("Software") shall not be subject to the terms and conditions set forth herein but rather shall be subject to the applicable terms and conditions that accompany such Software
 - 1.2 EVMs are not intended for consumer or household use. EVMs may not be sold, sublicensed, leased, rented, loaned, assigned, or otherwise distributed for commercial purposes by Users, in whole or in part, or used in any finished product or production system.
- 2 Limited Warranty and Related Remedies/Disclaimers:
 - 2.1 These terms and conditions do not apply to Software. The warranty, if any, for Software is covered in the applicable Software License Agreement.
 - 2.2 TI warrants that the TI EVM will conform to TI's published specifications for ninety (90) days after the date TI delivers such EVM to User. Notwithstanding the foregoing, TI shall not be liable for any defects that are caused by neglect, misuse or mistreatment by an entity other than TI, including improper installation or testing, or for any EVMs that have been altered or modified in any way by an entity other than TI. Moreover, TI shall not be liable for any defects that result from User's design, specifications or instructions for such EVMs. Testing and other quality control techniques are used to the extent TI deems necessary or as mandated by government requirements. TI does not test all parameters of each EVM.
 - 2.3 If any EVM fails to conform to the warranty set forth above, Tl's sole liability shall be at its option to repair or replace such EVM, or credit User's account for such EVM. Tl's liability under this warranty shall be limited to EVMs that are returned during the warranty period to the address designated by Tl and that are determined by Tl not to conform to such warranty. If Tl elects to repair or replace such EVM, Tl shall have a reasonable time to repair such EVM or provide replacements. Repaired EVMs shall be warranted for the remainder of the original warranty period. Replaced EVMs shall be warranted for a new full ninety (90) day warranty period.
- 3 Regulatory Notices:
 - 3.1 United States
 - 3.1.1 Notice applicable to EVMs not FCC-Approved:

This kit is designed to allow product developers to evaluate electronic components, circuitry, or software associated with the kit to determine whether to incorporate such items in a finished product and software developers to write software applications for use with the end product. This kit is not a finished product and when assembled may not be resold or otherwise marketed unless all required FCC equipment authorizations are first obtained. Operation is subject to the condition that this product not cause harmful interference to licensed radio stations and that this product accept harmful interference. Unless the assembled kit is designed to operate under part 15, part 18 or part 95 of this chapter, the operator of the kit must operate under the authority of an FCC license holder or must secure an experimental authorization under part 5 of this chapter.

3.1.2 For EVMs annotated as FCC - FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant:

CAUTION

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

FCC Interference Statement for Class B EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- · Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- · Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

3.2 Canada

3.2.1 For EVMs issued with an Industry Canada Certificate of Conformance to RSS-210

Concerning EVMs Including Radio Transmitters:

This device complies with Industry Canada license-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Concernant les EVMs avec appareils radio:

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Concerning EVMs Including Detachable Antennas:

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Concernant les EVMs avec antennes détachables

Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d'usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur

3.3 Japan

- 3.3.1 Notice for EVMs delivered in Japan: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_01.page 日本国内に輸入される評価用キット、ボードについては、次のところをご覧ください。
 http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_01.page
- 3.3.2 Notice for Users of EVMs Considered "Radio Frequency Products" in Japan: EVMs entering Japan may not be certified by TI as conforming to Technical Regulations of Radio Law of Japan.

If User uses EVMs in Japan, not certified to Technical Regulations of Radio Law of Japan, User is required by Radio Law of Japan to follow the instructions below with respect to EVMs:

- Use EVMs in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry's Rule for Enforcement of Radio Law of Japan,
- 2. Use EVMs only after User obtains the license of Test Radio Station as provided in Radio Law of Japan with respect to EVMs, or
- 3. Use of EVMs only after User obtains the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to EVMs. Also, do not transfer EVMs, unless User gives the same notice above to the transferee. Please note that if User does not follow the instructions above, User will be subject to penalties of Radio Law of Japan.

【無線電波を送信する製品の開発キットをお使いになる際の注意事項】 開発キットの中には技術基準適合証明を受けていないものがあります。 技術適合証明を受けていないもののご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。

- 1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用 いただく。
- 2. 実験局の免許を取得後ご使用いただく。
- 3. 技術基準適合証明を取得後ご使用いただく。
- なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。 上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。 日本テキサス・イ

ンスツルメンツ株式会社

東京都新宿区西新宿6丁目24番1号

西新宿三井ビル

- 3.3.3 Notice for EVMs for Power Line Communication: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.page 電力線搬送波通信についての開発キットをお使いになる際の注意事項については、次のところをご覧ください。 http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.page
- 4 EVM Use Restrictions and Warnings:
 - 4.1 EVMS ARE NOT FOR USE IN FUNCTIONAL SAFETY AND/OR SAFETY CRITICAL EVALUATIONS, INCLUDING BUT NOT LIMITED TO EVALUATIONS OF LIFE SUPPORT APPLICATIONS.
 - 4.2 User must read and apply the user guide and other available documentation provided by TI regarding the EVM prior to handling or using the EVM, including without limitation any warning or restriction notices. The notices contain important safety information related to, for example, temperatures and voltages.
 - 4.3 Safety-Related Warnings and Restrictions:
 - 4.3.1 User shall operate the EVM within TI's recommended specifications and environmental considerations stated in the user guide, other available documentation provided by TI, and any other applicable requirements and employ reasonable and customary safeguards. Exceeding the specified performance ratings and specifications (including but not limited to input and output voltage, current, power, and environmental ranges) for the EVM may cause personal injury or death, or property damage. If there are questions concerning performance ratings and specifications, User should contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may also result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM user guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, even with the inputs and outputs kept within the specified allowable ranges, some circuit components may have elevated case temperatures. These components include but are not limited to linear regulators, switching transistors, pass transistors, current sense resistors, and heat sinks, which can be identified using the information in the associated documentation. When working with the EVM, please be aware that the EVM may become very warm.
 - 4.3.2 EVMs are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems. User assumes all responsibility and liability for proper and safe handling and use of the EVM by User or its employees, affiliates, contractors or designees. User assumes all responsibility and liability to ensure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. User assumes all responsibility and liability for any improper or unsafe handling or use of the EVM by User or its employees, affiliates, contractors or designees.
 - 4.4 User assumes all responsibility and liability to determine whether the EVM is subject to any applicable international, federal, state, or local laws and regulations related to User's handling and use of the EVM and, if applicable, User assumes all responsibility and liability for compliance in all respects with such laws and regulations. User assumes all responsibility and liability for proper disposal and recycling of the EVM consistent with all applicable international, federal, state, and local requirements.
- 5. Accuracy of Information: To the extent TI provides information on the availability and function of EVMs, TI attempts to be as accurate as possible. However, TI does not warrant the accuracy of EVM descriptions, EVM availability or other information on its websites as accurate, complete, reliable, current, or error-free.

6. Disclaimers:

- 6.1 EXCEPT AS SET FORTH ABOVE, EVMS AND ANY WRITTEN DESIGN MATERIALS PROVIDED WITH THE EVM (AND THE DESIGN OF THE EVM ITSELF) ARE PROVIDED "AS IS" AND "WITH ALL FAULTS." TI DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, REGARDING SUCH ITEMS, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER INTELLECTUAL PROPERTY RIGHTS.
- 6.2 EXCEPT FOR THE LIMITED RIGHT TO USE THE EVM SET FORTH HEREIN, NOTHING IN THESE TERMS AND CONDITIONS SHALL BE CONSTRUED AS GRANTING OR CONFERRING ANY RIGHTS BY LICENSE, PATENT, OR ANY OTHER INDUSTRIAL OR INTELLECTUAL PROPERTY RIGHT OF TI, ITS SUPPLIERS/LICENSORS OR ANY OTHER THIRD PARTY, TO USE THE EVM IN ANY FINISHED END-USER OR READY-TO-USE FINAL PRODUCT, OR FOR ANY INVENTION, DISCOVERY OR IMPROVEMENT MADE, CONCEIVED OR ACQUIRED PRIOR TO OR AFTER DELIVERY OF THE EVM
- 7. USER'S INDEMNITY OBLIGATIONS AND REPRESENTATIONS. USER WILL DEFEND, INDEMNIFY AND HOLD TI, ITS LICENSORS AND THEIR REPRESENTATIVES HARMLESS FROM AND AGAINST ANY AND ALL CLAIMS, DAMAGES, LOSSES, EXPENSES, COSTS AND LIABILITIES (COLLECTIVELY, "CLAIMS") ARISING OUT OF OR IN CONNECTION WITH ANY HANDLING OR USE OF THE EVM THAT IS NOT IN ACCORDANCE WITH THESE TERMS AND CONDITIONS. THIS OBLIGATION SHALL APPLY WHETHER CLAIMS ARISE UNDER STATUTE, REGULATION, OR THE LAW OF TORT, CONTRACT OR ANY OTHER LEGAL THEORY, AND EVEN IF THE EVM FAILS TO PERFORM AS DESCRIBED OR EXPECTED.
- 8. Limitations on Damages and Liability:
 - 8.1 General Limitations. IN NO EVENT SHALL TI BE LIABLE FOR ANY SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF THESE TERMS ANDCONDITIONS OR THE USE OF THE EVMS PROVIDED HEREUNDER, REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO, COST OF REMOVAL OR REINSTALLATION, ANCILLARY COSTS TO THE PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, RETESTING, OUTSIDE COMPUTER TIME, LABOR COSTS, LOSS OF GOODWILL, LOSS OF PROFITS, LOSS OF SAVINGS, LOSS OF USE, LOSS OF DATA, OR BUSINESS INTERRUPTION. NO CLAIM, SUIT OR ACTION SHALL BE BROUGHT AGAINST TI MORE THAN ONE YEAR AFTER THE RELATED CAUSE OF ACTION HAS OCCURRED.
 - 8.2 Specific Limitations. IN NO EVENT SHALL TI'S AGGREGATE LIABILITY FROM ANY WARRANTY OR OTHER OBLIGATION ARISING OUT OF OR IN CONNECTION WITH THESE TERMS AND CONDITIONS, OR ANY USE OF ANY TI EVM PROVIDED HEREUNDER, EXCEED THE TOTAL AMOUNT PAID TO TI FOR THE PARTICULAR UNITS SOLD UNDER THESE TERMS AND CONDITIONS WITH RESPECT TO WHICH LOSSES OR DAMAGES ARE CLAIMED. THE EXISTENCE OF MORE THAN ONE CLAIM AGAINST THE PARTICULAR UNITS SOLD TO USER UNDER THESE TERMS AND CONDITIONS SHALL NOT ENLARGE OR EXTEND THIS LIMIT.
- 9. Return Policy. Except as otherwise provided, TI does not offer any refunds, returns, or exchanges. Furthermore, no return of EVM(s) will be accepted if the package has been opened and no return of the EVM(s) will be accepted if they are damaged or otherwise not in a resalable condition. If User feels it has been incorrectly charged for the EVM(s) it ordered or that delivery violates the applicable order, User should contact TI. All refunds will be made in full within thirty (30) working days from the return of the components(s), excluding any postage or packaging costs.
- 10. Governing Law: These terms and conditions shall be governed by and interpreted in accordance with the laws of the State of Texas, without reference to conflict-of-laws principles. User agrees that non-exclusive jurisdiction for any dispute arising out of or relating to these terms and conditions lies within courts located in the State of Texas and consents to venue in Dallas County, Texas. Notwithstanding the foregoing, any judgment may be enforced in any United States or foreign court, and TI may seek injunctive relief in any United States or foreign court.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2015, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity