

OPA375

SBOS886A - NOVEMBER 2017 - REVISED JANUARY 2019

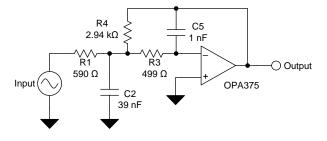
OPA375 500-µV (maximum), 10-MHz, Low broadband noise, RRO, operational amplifier

Features

Low Broadband Noise: 3.7 nV/√Hz Low Offset Voltage: 500 µV (Maximum)

Gain Bandwidth: 10 MHz Low Input Bias Current: 10 pA

Rail-to-Rail Output Unity-Gain Stable Low Io: 890 µA/ch


Microsize Package: SC70 (DCK) Wide Supply Range: 2.25 V to 5.5 V

ESD Protection: ±3000 V Human Body Model (HBM)

2 Applications

- **Photodiode Amplifiers**
- Precision Sensor Front-Ends
- **ADC Input-Driver Amplifiers**
- Test and Measurement Equipment
- Sensor Field Transmitters
- Wearable Consumer Applications
- Audio Equipment
- Medical Instrumentation
- Active Filters

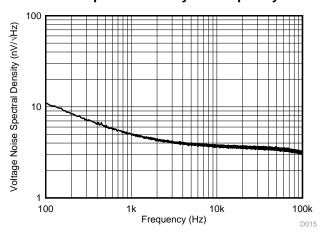
OPA375 in a Low-Pass Filter Application

3 Description

The OPA375 operational amplifier (op amp) is a general-purpose CMOS op amp that provides low noise of 3.7 nV/ $\sqrt{\text{Hz}}$ low offset of 500 μ V (maximum) and a wide bandwidth of 10 MHz. The low noise and wide bandwidth make the OPA375 device attractive for a variety of precision applications that require a good balance between cost and performance. Additionally, the input bias current of the OPA375 supports applications with high source impedance.

The robust design of the OPA375 provides ease-ofuse to the circuit designer due to the unity-gain stability, integrated RFI/EMI rejection filter, no phase reversal in overdrive conditions, and high electrostatic discharge (ESD) protection (1-kV HBM). Additionally, the resistive open-loop output impedance allows for easy stabilization with much higher capacitive loads.

This op amp is optimized for low-voltage operation as low as 2.25 V (±1.125 V) and up to 5.5 V (±2.75 V), and is specified over the temperature range of -40°C to +125°C.


The single-channel OPA375 is available in a smallsize SC70-5 package.

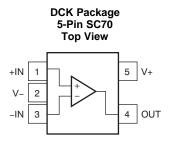
Device Information (1)

PART NUMBER	PACKAGE	BODY SIZE (NOM)		
OPA375	SC70 (5)	2.00 mm x 1.25 mm		

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Noise Spectral Density vs Frequency

Table of Contents


1 2 3	Features 1 Applications 1 Description 1	8	Application and Implementation	16
4 5	Revision History		Speech Filter Power Supply Recommendations	19
6	Specifications 4 6.1 Absolute Maximum Ratings 4 6.2 ESD Ratings 4 6.3 Recommended Operating Conditions 4 6.4 Thermal Information 4 6.5 Electrical Characteristics 5 6.6 Typical Characteristics 7		Layout	19 2' 2' tes 2' 2'
7	Detailed Description 14 7.1 Overview 14 7.2 Functional Block Diagram 14 7.3 Feature Description 14 7.4 Device Functional Modes 15		11.4 Trademarks	2 ¹

4 Revision History

Cł	nanges from Original (November 2017) to Revision A	Pag	е
•	Added maximum input offset voltage drift specification in Electrical Characteristics		5

5 Pin Configuration and Functions

Pin Functions

PIN		I/O	DESCRIPTION				
NAME	NO.	1/0	DESCRIPTION				
+IN	1	1	oninverting input				
-IN	3	1	verting input				
OUT	4	0	Output				
V+	5	_	sitive (highest) supply				
V-	2	_	Negative (lowest) supply				

Copyright © 2017–2019, Texas Instruments Incorporated

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range, unless otherwise noted

			MIN	MAX	UNIT
Supply voltage, \	/s			6	V
	Voltage	Common-mode	(V-) - 0.5	(V+) + 0.5	
Signal input terminals	Voltage	Differential		(V+) - (V-) + 0.2	V
terriiriais	Current		6 V (V-) - 0.5 (V+) + 0.5		
Output short-circ	uit		-10 10 m Continuous m		mA
Operating tempe	rature, T _A	-40	125	°C	
Storage tempera	ture, T _{stg}	-65	150	°C	

6.2 ESD Ratings

			VALUE	UNIT
	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±3000	
V _(ESD)		Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±1000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
Vs	Supply voltage	2.25 (±1.125)	5.5 (±2.75)	V
T _A	Ambient operating temperature	-40	125	°C

6.4 Thermal Information

		OPA375	
	THERMAL METRIC ⁽¹⁾	DCK (SC70)	UNIT
		5 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	240.9	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	151.7	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	64	°C/W
ΨЈТ	Junction-to-top characterization parameter	34.8	°C/W
ΨЈВ	Junction-to-board characterization parameter	63.3	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.5 Electrical Characteristics

at T_A = 25 °C, V_S (total supply voltage) = (V+) - (V-) = 5.5 V, R_L = 10 k Ω connected to V_S / 2, V_{CM} = V_S / 2, and V_{OUT} = V_S / 2 (unless otherwise noted)

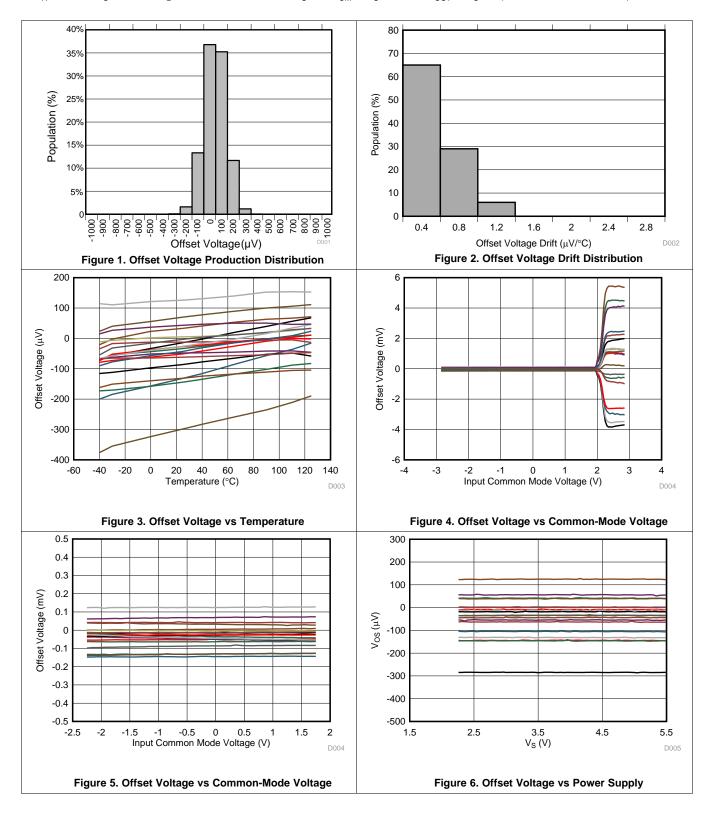
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFFSET VOL	TAGE					
Vos	Input offset voltage	V _S = 5 V		±0.15	±0.5	mV
dV _{OS} /dT	Input offset voltage drift	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$		±0.35	±2 ⁽¹⁾	μV/°C
PSRR	Power supply rejection ratio	$V_S = 2.25 \text{ V to } 5.5 \text{ V}, V_{CM} = (V-)$	104	130		dB
INPUT VOLTA	AGE RANGE					
V _{CM}	Common-mode voltage range		(V-)		(V+) - 1.2	V
CMRR	Common-mode rejection ratio	(V–) < V _{CM} < (V+) – 1.2 V	95	120		dB
INPUT BIAS	CURRENT					
I _B	Input bias current			±10		pA
I _{os}	Input offset current			±10		pA
NOISE						
	Input voltage noise (peak-to-peak)	f = 0.1 Hz to 10 Hz		1.5		μV_{p-p}
		f = 10 kHz		3.7		nV/√ Hz
e _n	Input voltage noise density	f = 1 kHz		5		nV/√ Hz
i _n	Input current noise density	f = 1 kHz		26		fA/√ Hz
INPUT CAPA	CITANCE					
0	Differential			6		pF
C _{IN}	Common-mode			6		pF
OPEN-LOOP	GAIN				•	
		$(V-) + 0.04 \text{ V} < V_O < (V+) - 0.04 \text{ V}, R_L = 10 \text{ k}\Omega$		125		dB
A _{OL}	Open-loop voltage gain	$(V-) + 0.15 V < V_O < (V+) - 0.15 V, R_L = 2 k\Omega$	110 130			dB
FREQUENCY	RESPONSE					
GBW	Gain-bandwidth product	G = 1		10		MHz
	Phase margin	$G = 1$, $R_L = 10 \text{ k}\Omega$		55		Degrees
SR	Slew rate	G = 1		4.75		V/µs
	0 (11)	To 0.1%, 2-V step , G = 1		0.65		μs
t _S	Settling time	To 0.01%, 2-V step , G = 1		1.2		μs
	Overload recovery time	V _{IN} × Gain > V _S		0.2		μs
THD+N	Total harmonic distortion + noise	$V_{O} = 1 V_{RMS}, V_{CM} = 2.5 V, G = 1, f = 1 kHz, R_{L} = 10 k\Omega, V_{S} = 5.5 V$	0	.00035%		
OUTPUT						
Vo	Voltage output swing from supply rails	$R_L = 10 \text{ k}\Omega$		8	10	mV
Z _O	Open-loop output impedance	f = 10 MHz		160		Ω
POWER SUP	PLY	,				
	Quiescent current per	I _O = 0 mA		890		μA
lα	amplifier	$I_O = 0$ mA, $T_A = -40$ °C to +125°C			1.1	mA

⁽¹⁾ Specified by design and characterization; not production tested.

Copyright © 2017–2019, Texas Instruments Incorporated

Table 1. Table of Graphs

DESCRIPTION	FIGURE
Offset Voltage Production Distribution	Figure 1
Offset Voltage Drift Distribution	Figure 2
Offset Voltage vs Temperature	Figure 3
Offset Voltage vs Common-Mode Voltage	Figure 4
Offset Voltage vs Common-Mode Voltage	Figure 5
Offset Voltage vs Power Supply	Figure 6
I _B and I _{OS} vs Common-Mode Voltage	Figure 7
I _B and I _{OS} vs Temperature	Figure 8
Open-Loop Gain and Phase vs Frequency	Figure 9
Closed-Loop Gain vs Frequency	Figure 10
V _O vs I Sourcing and Sinking	Figure 11
PSRR vs Frequency (Referred to Input)	Figure 12
CMRR vs Frequency (Referred to Input)	Figure 13
CMRR vs Temperature	Figure 14
0.1-Hz to 10-Hz Flicker Noise	Figure 15
Input Voltage Noise Spectral Density vs Frequency	Figure 16
THD + Noise vs Frequency	Figure 17
THD + Noise vs Frequency	Figure 18
THD + Noise vs Amplitude	Figure 19
Quiescent Current vs Supply Voltage	Figure 20
Quiescent Current vs Temperature	Figure 21
Open-Loop Gain vs Temperature	Figure 22
Open-Loop Gain vs Output Voltage	Figure 23
Open-Loop Output Impedance vs Frequency	Figure 24
Small-Signal Overshoot vs Load Capacitance	Figure 25
Small-Signal Overshoot vs Load Capacitance	Figure 26
Small-Signal Overshoot vs Load Capacitance	Figure 27
Small-Signal Overshoot vs Load Capacitance	Figure 28
No Phase Reversal	Figure 29
Overload Recovery	Figure 30
Small-Signal Step Response	Figure 31
Large Signal Step Response	Figure 32
Large Signal Settling Time (Positive)	Figure 33
Large Signal Settling Time (Negative)	Figure 34
Short-Circuit Current vs Temperature	Figure 35
Maximum Output Voltage vs Frequency	Figure 36
Electromagnetic Interference Rejection Ratio Referred to Noninverting Input (EMIRR+) vs Frequency	Figure 37
Phase Margin vs Capacitive Load	Figure 38


Submit Documentation Feedback

Copyright © 2017–2019, Texas Instruments Incorporated

6.6 Typical Characteristics

at T_A = 25°C, V_S = 5.5 V, R_L = 10 k Ω connected to V_S / 2, V_{CM} = V_S / 2, and V_{OUT} = V_S / 2 (unless otherwise noted)

Copyright © 2017–2019, Texas Instruments Incorporated

STRUMENTS

Typical Characteristics (continued)

at $T_A = 25$ °C, $V_S = 5.5$ V, $R_L = 10$ k Ω connected to V_S / 2, $V_{CM} = V_S$ / 2, and $V_{OUT} = V_S$ / 2 (unless otherwise noted)

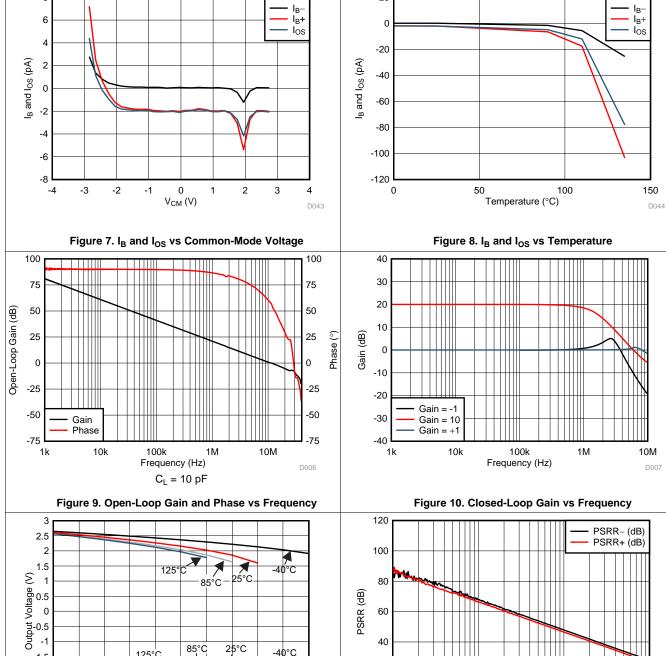


Figure 11. Vo vs I Sourcing and Sinking

35 40

Output Current (mA)

45 50 55

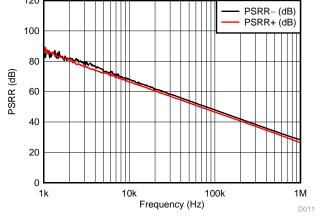
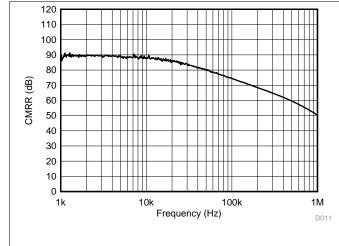


Figure 12. PSRR vs Frequency (Referred to Input)

-1.5 -2

-2.5 -3


10

15 20 25 30

Typical Characteristics (continued)

at $T_A = 25^{\circ}C$, $V_S = 5.5$ V, $R_L = 10$ k Ω connected to V_S / 2, $V_{CM} = V_S$ / 2, and $V_{OUT} = V_S$ / 2 (unless otherwise noted)

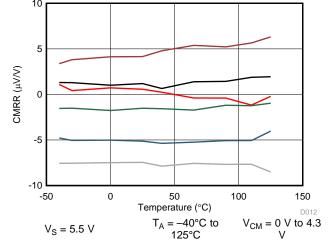
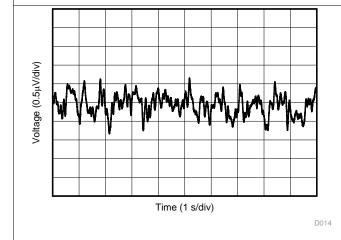



Figure 13. CMRR vs Frequency (Referred to Input)

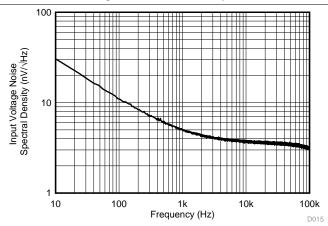
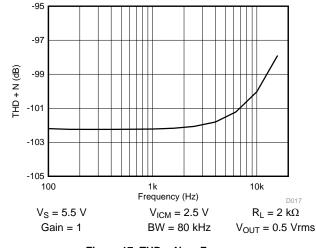



Figure 15. 0.1-Hz to 10-Hz Flicker Noise

Figure 16. Input Voltage Noise Spectral Density vs Frequency

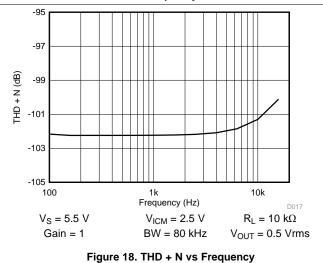
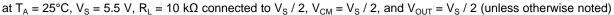
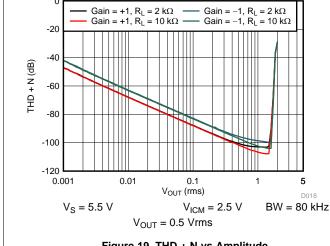




Figure 17. THD + N vs Frequency

STRUMENTS

Typical Characteristics (continued)

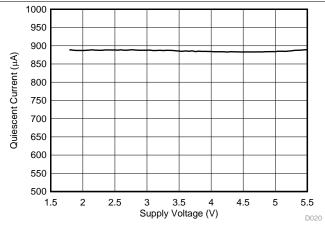
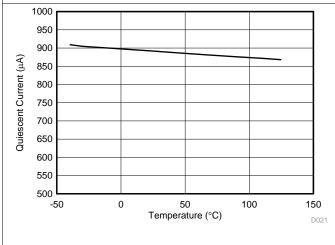



Figure 19. THD + N vs Amplitude

Figure 20. Quiescent Current vs Supply Voltage

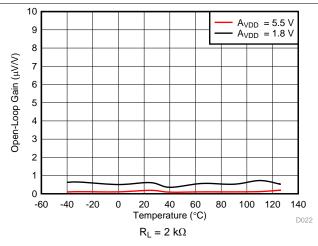
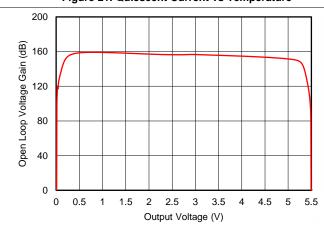
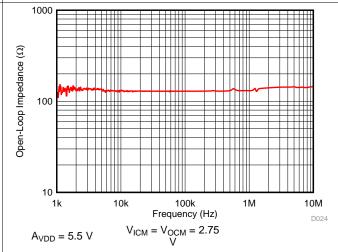
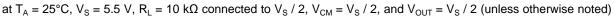



Figure 21. Quiescent Current vs Temperature

Figure 22. Open-Loop Gain vs Temperature

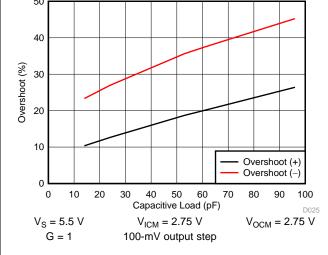

Figure 23. Open-Loop Gain vs Output Voltage

Figure 24. Open-Loop Output Impedance vs Frequency

Typical Characteristics (continued)

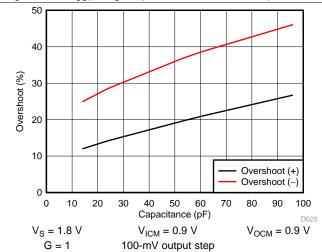
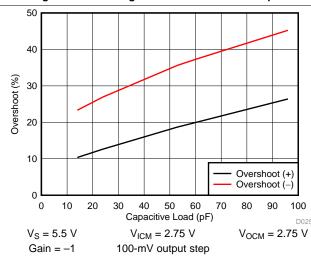



Figure 25. Small-Signal Overshoot vs Load Capacitance

Figure 26. Small-Signal Overshoot vs Load Capacitance

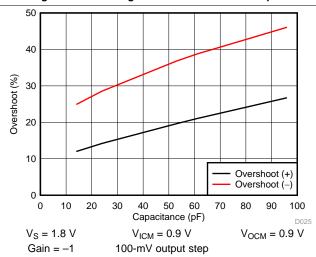
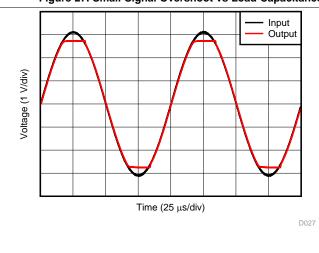
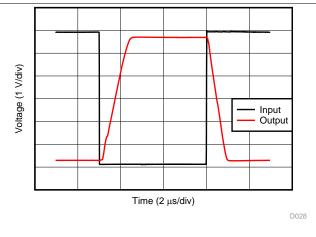
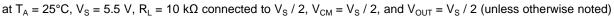



Figure 27. Small-Signal Overshoot vs Load Capacitance

Figure 28. Small-Signal Overshoot vs Load Capacitance

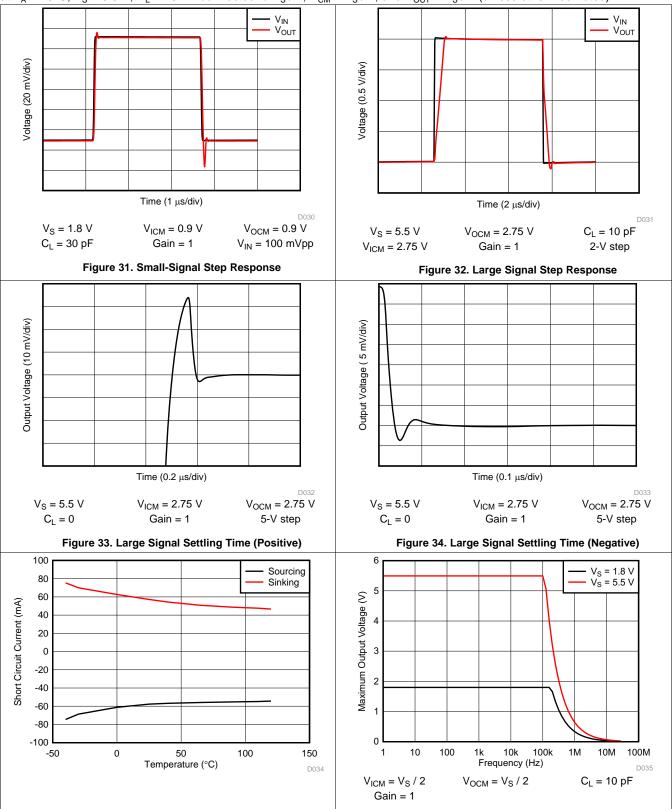

Figure 29. No Phase Reversal

Figure 30. Overload Recovery

TEXAS INSTRUMENTS

Typical Characteristics (continued)

Submit Documentation Feedback

Figure 35. Short-Circuit Current vs Temperature

Copyright © 2017–2019, Texas Instruments Incorporated

Figure 36. Maximum Output Voltage vs Frequency

Typical Characteristics (continued)

at $T_A = 25$ °C, $V_S = 5.5$ V, $R_L = 10$ k Ω connected to V_S / 2, $V_{CM} = V_S$ / 2, and $V_{OUT} = V_S$ / 2 (unless otherwise noted)

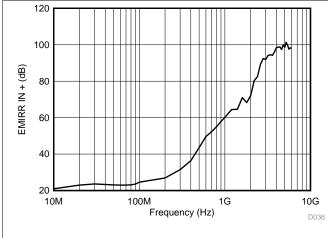


Figure 37. Electromagnetic Interference Rejection Ratio Referred to Noninverting Input (EMIRR+) vs Frequency

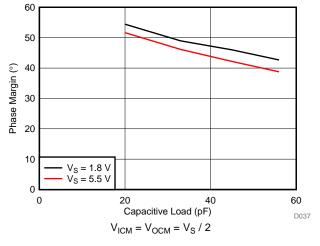
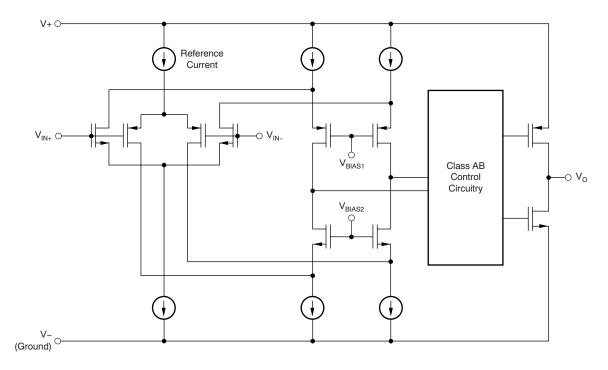


Figure 38. Phase Margin vs Capacitive Load



7 Detailed Description

7.1 Overview

The OPA375 is a ultra low-noise, rail-to-rail output operational amplifier. The device operates from a supply voltage of 2.25 V to 5.5 V, is unity-gain stable, and engineers can use this device for a wide range of general-purpose applications. The input common-mode voltage range includes the negative rail and allows the OPA375 op amp to be used in most single-supply applications. Rail-to-rail output swing significantly increases dynamic range, especially in low-supply applications, and as a result, the engineers can use the OPA375 device for audio applications and driving sampling analog-to-digital converters (ADCs).

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 THD+ Noise Performance

The OPA375 op amp has distortion characteristics. THD + noise is below 0.00035% (G = 1, V_O = 1 V_{RMS} . V_{CM} = 2.5 V, V_S = 5.5 V) throughout the audio frequency range, 20 Hz to 20 kHz, with a 10-k Ω load. The broadband noise of the OPA375 of 3.7 nV/ \sqrt{Hz} is extremely low for a 10 MHz general-purpose amplifier.

7.3.2 Operating Voltage

The OPA375 op amp is fully specified and can operate from 2.25 V to 5.5 V. In addition, many specifications apply from –40°C to +125°C. Power-supply pins must be bypassed with 0.1-µF ceramic capacitors.

7.3.3 Rail-to-Rail Output

Designed as low-power, low-voltage op amps, the OPA375 delivers a robust output drive capability. A class AB output stage with common-source transistors achieves full rail-to-rail output swing capability. For resistive loads of 10 k Ω , the output swings to within few mV of either supply rail, regardless of the applied power-supply voltage. Different load conditions change the ability of the amplifier to swing close to the rails

Feature Description (continued)

7.3.4 Input and ESD Protection

The OPA375 incorporates internal electrostatic discharge (ESD) protection circuits on all pins. In the case of input and output pins, this protection primarily consists of current-steering diodes connected between the input and power-supply pins. These ESD protection diodes provide in-circuit, input overdrive protection, as long as the current is limited to 10 mA as stated in the *Absolute Maximum Ratings*. Figure 39 shows how a series input resistor can be added to the driven input to limit the input current. The added resistor contributes thermal noise at the amplifier input and the value must be kept to a minimum in noise-sensitive applications.

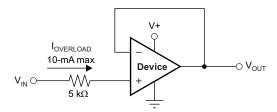


Figure 39. Input Current Protection

7.3.5 EMI Susceptibility and Input Filtering

Op amps vary with regard to the susceptibility of the device to electromagnetic interference (EMI). If conducted EMI enters the operational amplifier, the DC offset observed at the amplifier output may shift from the nominal value while EMI is present. This shift is a result of signal rectification associated with the internal semiconductor junctions. While all operational amplifier pin functions can be affected by EMI, the signal input pins are likely to be the most susceptible. The OPA375 operational amplifier incorporates an internal input low-pass filter that reduces the response of the op amp to EMI. This filter provides common-mode and differential mode filtering.

Texas Instruments has developed the ability to accurately measure and quantify the immunity of an operational amplifier over a broad frequency spectrum extending from 10 MHz to 6 GHz. The EMI rejection ratio (EMIRR) metric allows op amps to be directly compared by the EMI immunity. Detailed information can also be found in *EMI Rejection Ratio of Operational Amplifiers*, available for download from www.ti.com.

7.3.6 Common Mode Voltage Range

The input common-mode voltage range of the OPAx375 series extends to the negative rail and within 2 V of the top rail for normal operation. However, this device can also operate with full rail-to-rail input 100 mV beyond the top rail, but with reduced performance within 2 V of the top rail. The typical performance in this range is summarized in .

Table 2. Typical Performance ($V_S = 5V$, $V_{CM} > V_S - 1.2V$)

PARAMETER	MIN	TYP	MAX	UNIT
Offset voltage		3		mV
Slew rate		1.5		V/uS
Input voltage noise density at f = 1kHz		15		nV/√ Hz

7.4 Device Functional Modes

The OPA375 device has a single functional mode. This device is powered on as long as the power-supply voltage is between 2.25 V $(\pm 1.125 \text{ V})$ and 5.5 V $(\pm 2.75 \text{ V})$.

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The OPA375 device features 10-MHz bandwidth and 4.75-V/ μ s slew rate with 890- μ A of supply current per channel, providing good AC performance at low-power consumption. DC applications are well served with a low input noise voltage of 3.7 nV / $\sqrt{\text{Hz}}$ at 10 kHz, low input bias current, and a typical input offset voltage of 0.15 mV.

8.2 Single-Supply Electret Microphone Pre-amplifier With Speech Filter

Electret microphones are commonly used in portable electronics because of the small size, low cost, and relatively good signal-to-noise ratio (SNR). The small package size, low operating voltage and AC performance of the OPA375 make the device a viable option for pre-amplifier circuits for electret microphones. The circuit shown in Figure 40 is a single-supply pre-amplifier circuit for electret microphones.

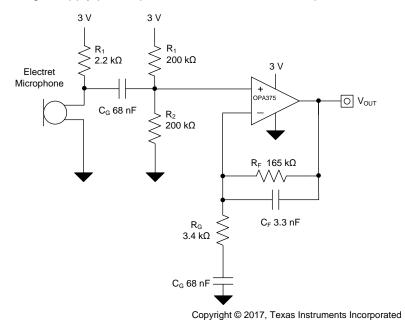


Figure 40. Microphone Pre-Amplifier

8.2.1 Design Requirements

The design requirements are as follows:

Supply voltage: 3 V

Input voltage: 7.93 mV_{RMS} (0.63 Pa with a –38 dB SPL microphone)

Output: 1 V_{RMS}

Bandwidth: 300 Hz to 3 kHz

8.2.2 Detailed Design Procedure

The transfer function defining the relationship between V_{OUT} and the AC input signal is shown in Equation 1:

Single-Supply Electret Microphone Pre-amplifier With Speech Filter (continued)

$$V_{OUT} = V_{IN_AC} \times \left(1 + \frac{R_F}{R_G}\right) \tag{1}$$

The required gain can be calculated based on the expected input signal level and desired output level as shown in Equation 2

$$G_{OPA} = \frac{V_{OUT}}{V_{IN_AC}} = \frac{1V_{RMS}}{7.93mV_{RMS}} = 126\frac{V}{V}$$
(2)

Select a standard 10-k Ω feedback resistor and calculate R_G from Equation 3.

$$R_G = \frac{R_F}{G_{OPA} - 1} = \frac{10k\Omega}{126\frac{V}{V} - 1} = 80\Omega \rightarrow 78.7\Omega \text{ (closest standard value)}$$
(3)

To minimize the attenuation in the desired passband from 300 Hz to 3 kHz set the upper (f_H) and lower (f_L) cutoff frequencies outside of the desired bandwidth as:

$$f_L = 200 \text{ Hz}$$
 (4)

and

$$f_H = 5 \text{ kHz}$$
 (5)

Select C_G to set the f_L cutoff frequency using Equation 6:

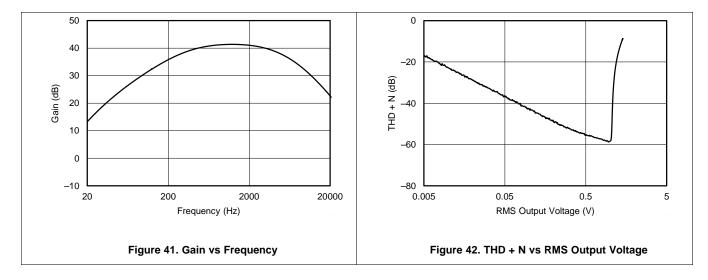
$$C_G = \frac{1}{2 \times \pi \times R_G \times f_L} = \frac{1}{2 \times \pi \times 78.7\Omega \times 200 Hz} = 10.11 \mu F \to 10 \mu F$$
(6)

Select C_F to set the f_H cutoff frequency using Equation 7

$$C_F = \frac{1}{2 \times \pi \times R_F \times f_H} = \frac{1}{2 \times \pi \times 10k\Omega \times 5kHz} = 3.18nF \rightarrow 3.3nF \text{ (Standard Value)}$$
(7)

The input signal cutoff frequency must be set low enough such that low-frequency sound waves still pass through. Therefore select C_{IN} to achieve a 30-Hz cutoff frequency (f_{IN}) using Equation 8.

$$C_{IN} = \frac{1}{2 \times \pi \times (R_1 \parallel R_2) \times f_{IN}} = \frac{1}{2 \times \pi \times 100k\Omega \times 30Hz} = 53nF \rightarrow 68nF \text{ (Standard Value)}$$
(8)


The measured transfer function for the microphone preamplifier circuit is shown in Figure 41 and The measured THD+N performance of the microphone preamplifier circuit is shown in Figure 42.

Copyright © 2017–2019, Texas Instruments Incorporated

Single-Supply Electret Microphone Pre-amplifier With Speech Filter (continued)

8.2.3 Application Curves

9 Power Supply Recommendations

The OPA375 device is specified for operation from 2.25 V to 5.5 V (± 1.125 V to ± 2.75 V); many specifications apply from -40° C to $\pm 1.125^{\circ}$ C. Place 0.1- μ F bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-impedance power supplies.

CAUTION

Supply voltages larger than 7 V can permanently damage the device (see the *Absolute Maximum Ratings*).

Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-impedance power supplies. For more detailed information on bypass capacitor placement, see the *Layout Guidelines* section.

10 Layout

10.1 Layout Guidelines

For best operational performance of the device, use good printed-circuit board (PCB) layout practices, including:

- Noise can propagate into analog circuitry through the power pins of the circuit as a whole and the
 operational amplifier. Bypass capacitors are used to reduce the coupled noise by providing lowimpedance power sources local to the analog circuitry.
 - Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for singlesupply applications.
- Separate grounding for analog and digital portions of the circuitry is one of the simplest and most
 effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to
 ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to
 physically separate digital and analog grounds, paying attention to the flow of the ground current. For
 more detailed information, see Circuit Board Layout Techniques.
- To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If these traces cannot be kept separate, crossing the sensitive trace perpendicularly is much better than crossing in parallel with the noisy trace.
- Place the external components as close to the device as possible. Keeping RF and RG close to the inverting input minimizes parasitic capacitance, as shown in Figure 43.
- Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit.
- Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials.

Product Folder Links: OPA375

Copyright © 2017-2019, Texas Instruments Incorporated

10.2 Layout Example

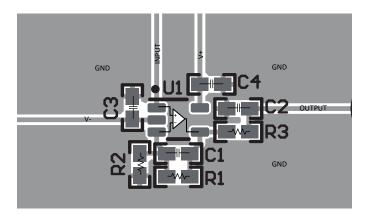


Figure 43. Operational Amplifier Board Layout for Noninverting Configuration

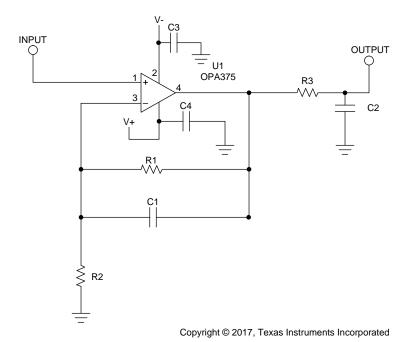


Figure 44. Layout Example Schematic

11 Device and Documentation Support

11.1 Device Support

11.1.1 DFN Package

NOTE

The exposed leadframe die pad on the bottom of the DFN package should be connected to the most negative potential (V–).

11.1.2 Documentation Support

11.1.2.1 Related Documentation

For related documentation see the following:

- Texas Instruments, QFN/SON PCB Attachment
- Texas Instruments, Quad Flatpack No-Lead Logic Packages
- Texas Instruments, Circuit Board Layout Techniques
- Texas Instruments, EMI Rejection Ratio of Operational Amplifiers

11.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.3 Community Resource

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.4 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGE OPTION ADDENDUM

15-Mar-2018

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
OPA375IDCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	19W	Samples
OPA375IDCKT	ACTIVE	SC70	DCK	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	19W	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

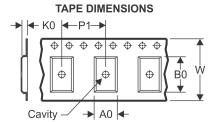
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

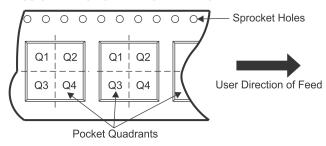
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

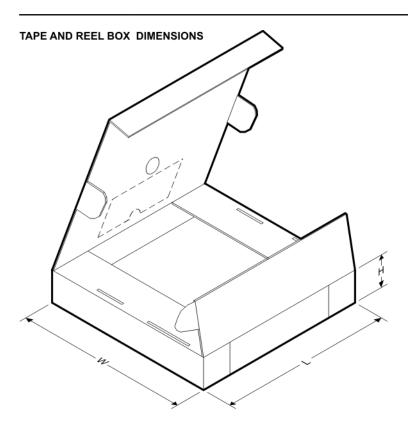

15-Mar-2018

PACKAGE MATERIALS INFORMATION

www.ti.com 30-Apr-2018


TAPE AND REEL INFORMATION

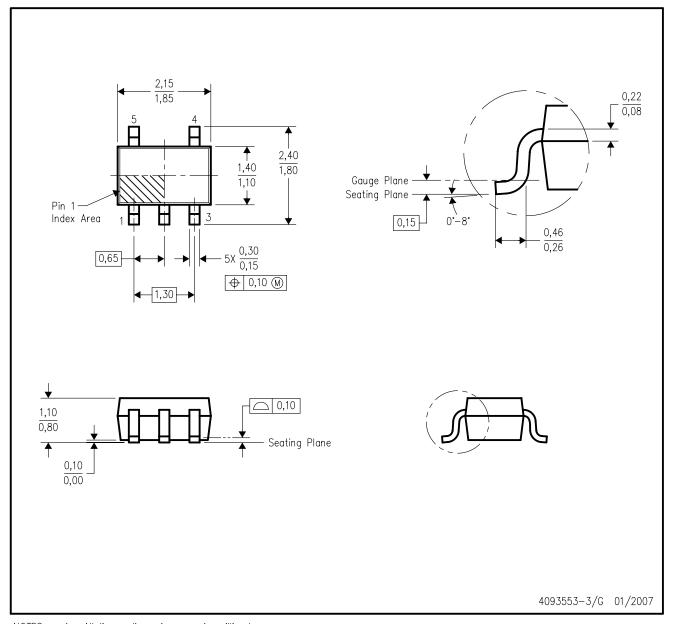
	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
OPA375IDCKR	SC70	DCK	5	3000	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
OPA375IDCKT	SC70	DCK	5	250	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3

www.ti.com 30-Apr-2018

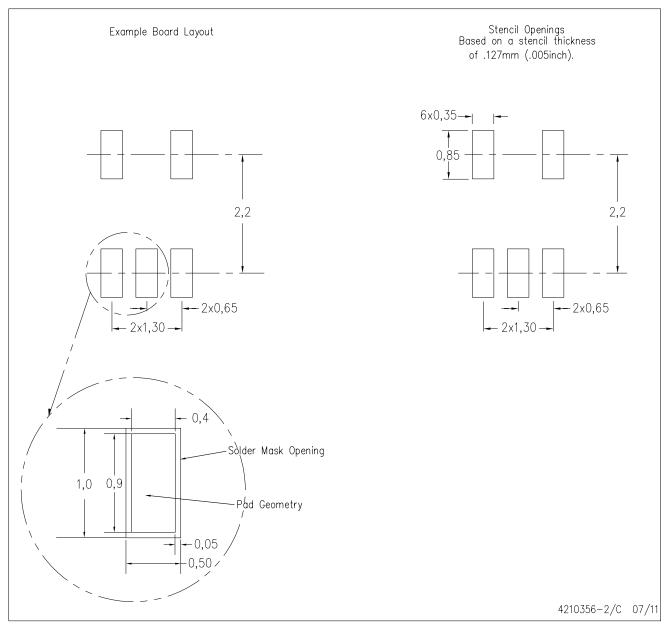


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
OPA375IDCKR	SC70	DCK	5	3000	190.0	190.0	30.0
OPA375IDCKT	SC70	DCK	5	250	190.0	190.0	30.0

DCK (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-203 variation AA.

DCK (R-PDSO-G5)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2019, Texas Instruments Incorporated