

Product Specification

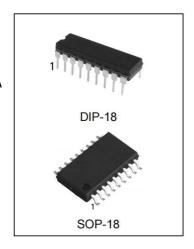
XBLW SG3526

Performance pulse width modulator integrated circuit

General Description

The SG3526 is a high performance pulse width modulator integrated circuit intended for fixed frequency switching regulators and other power control applications.

Functions included in this IC are a temperature compensated voltage reference, sawtooth oscillator, error amplifier, pulse width modulator, pulse metering and steering logicand two high current totem pole outputs ideally suited fo rdriving the capacitance of power FETs at high speeds.

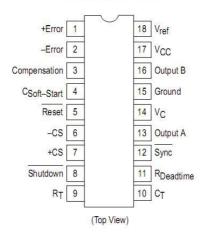

Additional protective features include soft start and undervoltage lockout, digital current limiting, double pulse inhibit, adjustable dead time and a data latch for single pulse metering.

All digital control ports are TTL and B-series CMOS compatible. Active low logic design allows easy wired-OR connections for maximum fiexibility.

The versatility of this device enablesimplementation or transformer coupled

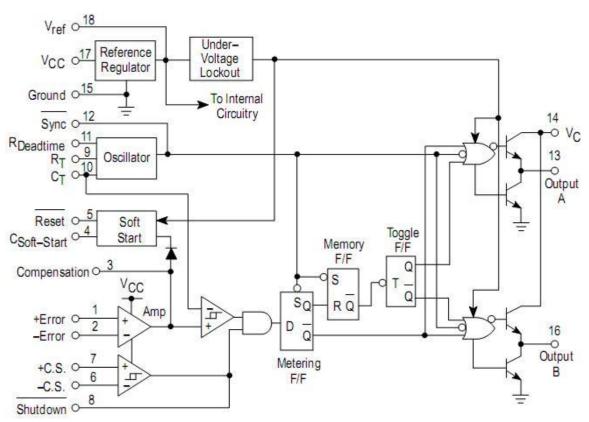
Features

- 8.0V to 35V Operation
- 5.0V ±1% Trimmed Reference
- 1.0Hz to 400KHz Oscillator Range Dual Source/Sink Current Outputs:±100mA
- Digital Current Limiting
- Programmable Dead Time
- Undervolage-Lockout
- Single Pulse Metering
- Programmable Soft-Start
- Wide Current Limit Common Mode
- Range Guaranteed 6 Unit Synchronization



Ordering Information

Product Model	Package Type	Marking	Packing	Packing Qty
XBLW SG3526N	DIP-18	SG3526N	Tube	1000/Box
XBLW SG3526DTR	SOP-18	SG3526	Tape	2000/Reel


Block Diagram And Pin Description

PIN CONNECTIONS

Representative Block Diagram

Maximum Ratings (Note1)

Rating	Symbol	Value	Unit
Supply Voltage	Vcc	+40	Vdc
Collector Supply Voltage	Vc	+40	Vdc
Logic Inputs		-0.3 to + 5.5	V
Analog Inputs		-0.3 to +5.5	V
Output Current, Source or Sink	Io	±200	mA
Reference Load Current(Vcc=40V Note2)	Iref	50	mA
Logic Sink Current		15	mA
Power Dissipation Ta=+25°C (note3)	Pd	1000	mW
Operating Temperature Range	Та	0~70	°C
Storage Temperature Range	Tstg	-65 to +150	°C
Lead Temperature(Soldering, 10Seconds)	Tsolder	±300	°C

NOTES:

Values beyond which damage may occur.

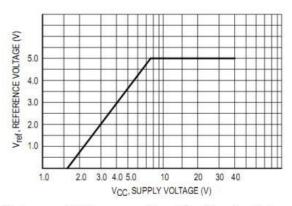
Maximum junction temperature must be observed.

Derate at 10 mW/ $^{\circ}$ C for ambient temperatures above +50 $^{\circ}$ C.

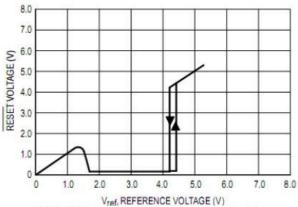
Recommended Operating Conditions

Charachteristics		Symbol	Min		Max	Ur	Unit	
Supply Voltage		Vcc	8.0		35	Vo	Vdc	
Collector Supply Voltage		Vc	4.5		35	Vo	Vdc	
Output Sink/Source Current(Each Output)		Io	0		±100		nA	
Reference Load Current		Iref	0		20	n	mA	
Oscilliator Frequency Range	<u> </u>	Fosc	0.001		400		Khz	
Oscillator Timing Resistor		Rt	2.0		150		ΚΩ	
Osicllator Timing Capacitor		Ct	0.001		20	u	uF	
Available Deadtime Range(4	ł0Khz)		3.0		50		%	
Operating Junction Range	Temperature	Tj	0		+125		°C	
Minimun Frequency (Rt=150Kohm,Ct=20uF)	Fmin		0.5				Hz	
Maximum Frequency (Rt=2.0Kohm,Ct=0.001uF)	Fmax	400	-		-		KHz	
Sawtooth Peak Voltage(Vcc=35V)	Vosc(p)	-	3.0	3	3.5		V	
Sawtooth Valley Voltage(Vcc=8.0V)	Vosc(V)	0.45	0.8	-		V	V	
Error Amplifier Section (note	e6)							
Input Offset Voltage			Vio		2.0	10	mV	
Input Bias Current			Iib		-350	-2000	nA	
Input Offset Current			Iio		35	200	nA	
Characteristics			Symbol	Min	Тур	Max	Unit	
DC Open Loop Gain(RI≥10N	1ohm)		Av	60	72		dB	
High Output Voltage (Vpin1-Vpin2≥+150mV, Isource=100uA)			Voh	3.6	4.2		V	
Low Output Voltage (Vpin2-Vpin1≥+150mV, Isink=100uA)			Vol		0.2	0.4	V	
Common Mode Rejection Ratio(Rs≤2.0Kohm)			CMRR	70	94		dB	
Power Supply Rejection Ration(+12V≤Vcc≤+18V)			PSRR	66	80		dB	
PWM Comparator Section(N	ote5)					•		
Minimum Duty Cycle								
(Vcompensation = +0.4V)		Dcmin			0	%		
Maximum Duty Cycle (Vcompensation = +3.6V)			Dcmax	45	49		%	
Digital Ports(SYNC, SHUTDO)WN,RESET)							

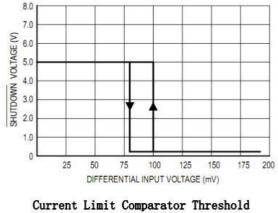
Output Voltage							
(High Logic Level) (Isource=40uA)	Vo	2.4	4.0		V		
(Low Logic Level) (Isink=3.6mA)	h		0.2	0.4			
	Vol						
Input Current-High Logic Level							
(High Logic Level) (Vih=+2.4V)	Iih		-125	-200	uA		
(Low Logic Level) (Vil = +0.4V)	Iil		-225	-360			
Current Limit Comparator Section(note7)							
Sense Voltage(Rs≤50 Ω)	Vsense	80	100	120	mA		
Input Bias Current	Iib		-3.0	-10	uA		
Soft-Start Section							
Error Clamp Voltage(Reset=+0.4V)			0.1	0.4	V		
Csoft-Start Charging Current(Reset=+2.4V)	Ics	50	100	150	uA		
Output Drivers(each output, Vc=+15Vdc)Unless otherwise noted.							
Output High Level							
Isource = 20mA	Voh	12.	13.		V		
Isource = 100mA		5	5				
		12	13				
Output Low Level							
Isink = 20 mA	Vol		0.2	0.3	V		
Isink = 100mA			1. 2	2.0			
	7 (1 1)			.=0	_		
Collector Leakage,Vc=+40V	Ic(Leak)	-	50	150	uA		
Rise Time(CL=1000pF)	Tr		0.3	0.6	uS		
Fall Time(CL=1000pF)	Tf		0.1	0.2	uS		
Supply Current			40	20	_		
(Shutdown = $+0.4V$, Vcc= $+35V$, Rt= $4.12K \Omega$)	Icc	-	18	30	mA		

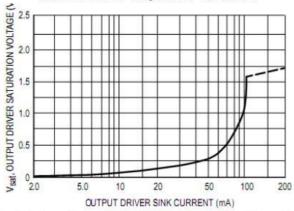

Notes:

Tlow = 0 °CThigh = +125°C

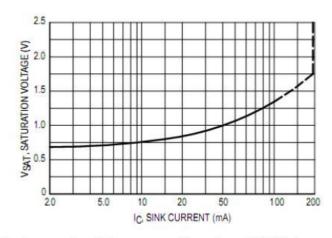

fosc=40KHz(Rt=4.12k Ω ±1%,CT=0.01uF±1%, RD=0 Ω)

 $0V \le VCM \le +5.2V$

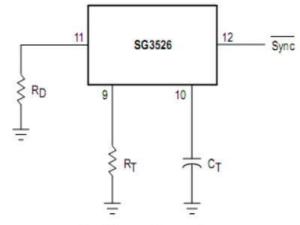

 $0V \le VCM \le +12V$



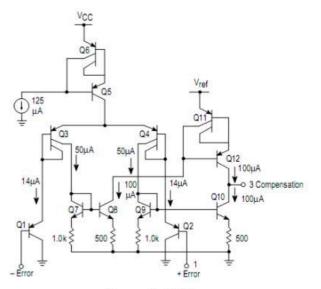
Reference Voltage as a Function Supply Votage

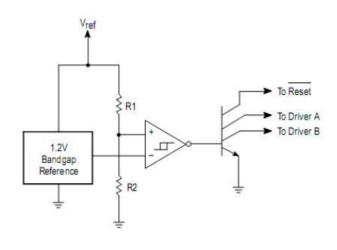


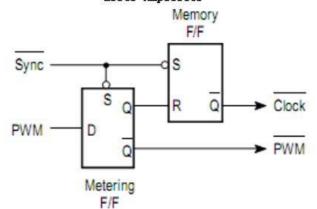
UnderVoltage Lockout Characteristic



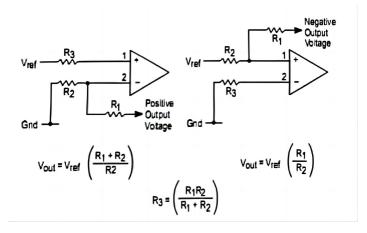
Output Driver Saturation Voltage as a Function of Sink Current




Vc Saturation Voltage as a Function of Sink Current

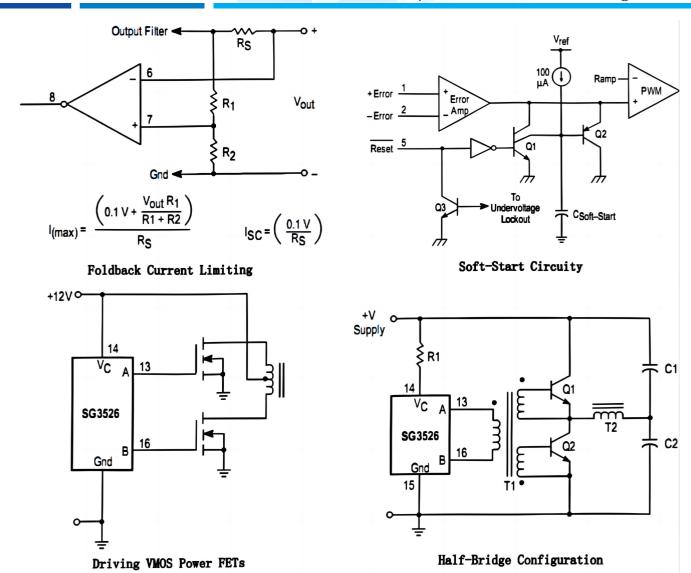

Oscillator Connections

Error Amplifier

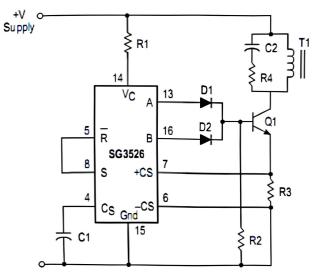


Undervotage Lockout

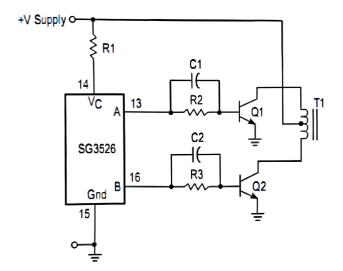
The metering Flip-Flop is an asynchronous data latch which suppresses high frequency oscillations by allowing only one PWM pulse per oscillator cycle.

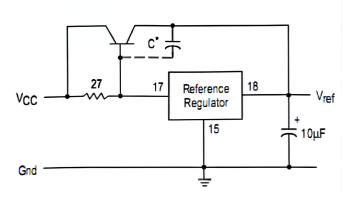

The memory Flip-Flop prevents double pulsing in a push-pull configuration by remembering which output produced the last pulse.

Pulse Processing Logic



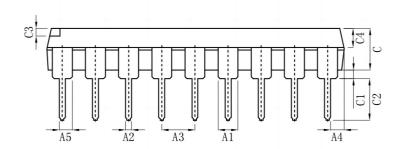
Error Amplifier Connects

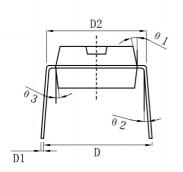


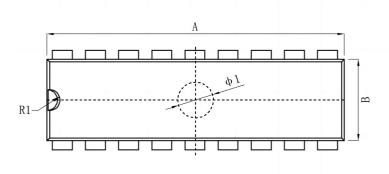

Flyback Converter with Current Limiting

Push-Pull Configuration

Single-Ended Configuration

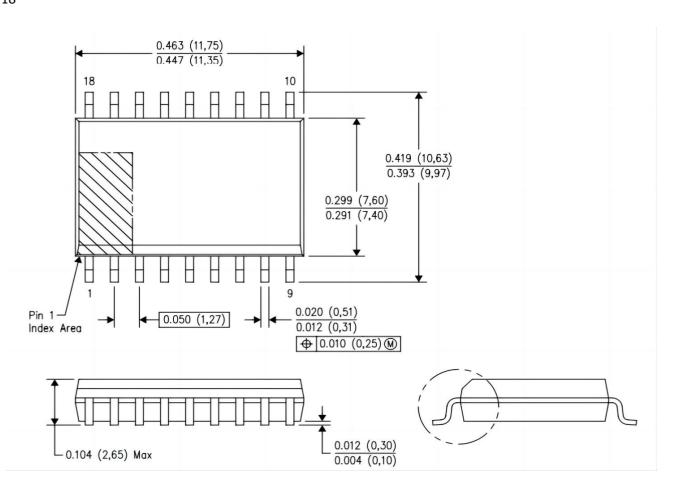


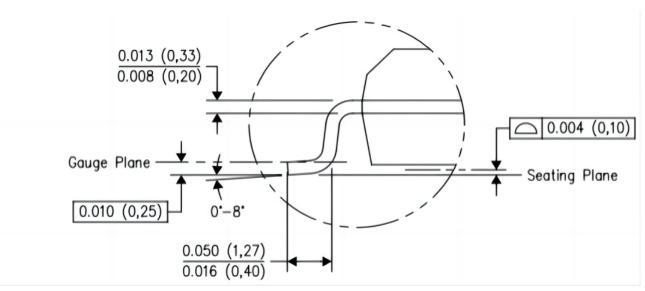

Extending Reference Output Current Capability



Package Information

DIP-18





Size	MIN(mm)	MAX (mm)	Size Symbol	MIN(mm)	MIN(mm)	
A	22. 76	22. 96	C3	0.60	0.70	
A1	1. 52	4TYP	C4	1.47	1. 57	
A2	0.41	0.51	D	8.20	8.80	
A3	2. 54	TYP	D1	0.20	0.35	
A4	1. 042TYP		D2	7. 62	7.87	
A5	0.99	1TYP	R1	0.80	OTYP	
В	6.25	6. 45	θ 1	12° TYP4		
С	3.20	3.40	θ 2	5° TYP		
C1	0.65	0.85	θ 3	7° TYP4		
C2	3.20	3.40	ф1	3. 0*0. 1TYP		

SOP-18

Statement:

- XBLW reserves the right to modify the product manual without prior notice! Before placing an order, customers need to confirm whether the obtained information is the latest version and verify the completeness of the relevant information.
- Any semi-guide product is subject to failure or malfunction under specified conditions. It is the buyer's responsibility to comply with safety standards when using XBLW products for system design and whole machine manufacturing. And take the appropriate safety measures to avoid the potential in the risk of loss of personal injury or loss of property situation!
- XBLW products have not been licensed for life support, military, and aerospace applications, and therefore XBLW is not responsible for any consequences arising from the use of this product in these areas.
- If any or all XBLW products (including technical data, services) described or contained in this document are subject to any applicable local export control laws and regulations, they may not be exported without an export license from the relevant authorities in accordance with such laws.
- The specifications of any and all XBLW products described or contained in this document specify the performance, characteristics, and functionality of said products in their standalone state, but do not guarantee the performance, characteristics, and functionality of said products installed in Customer's products or equipment. In order to verify symptoms and conditions that cannot be evaluated in a standalone device, the Customer should ultimately evaluate and test the device installed in the Customer's product device.
- XBLW documentation is only allowed to be copied without any alteration of the content and with the relevant authorization. XBLW assumes no responsibility or liability for altered documents.
- XBLW is committed to becoming the preferred semiconductor brand for customers, and XBLW will strive to provide customers with better performance and better quality products.