

Description

650V N-CHANNEL ENHANCEMENT MODE POWER MOSFET

Features • $R_{DS(ON)} = 1.27\Omega$ (Max.) @ $V_{GS} = 10V$, $I_D = 3.5A$ • Fast switching • 100% avalanche tested • Improved dv/dt capability	 Application DC-DC & DC-AC Converters Uninterruptible Power Supply (UPS) Switch Mode Low Power Supplies 	
Package		

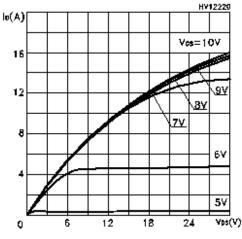
Absolute Maximum Ratings ${\tt Tc=25^{\circ}C}$ unless otherwise specified

Symbol	Parameter		Max.		
			TO-220	TO-220F	- Units
V _{DSS}	Drain-Source Voltage		650		V
V _{GSS}	Gate-Source Voltage		±	V	
lo	Continuous Drain Current	Tc = 25℃	7	7*	Α
		Tc = 100℃	4.3	4.3*	Α
IDM	Pulsed Drain Current note1		28	28*	A
E _{AS}	Single Pulsed Avalanche Energy note2		20	mJ	
dv/dt	Peak Diode Recovery Energy note3		4.5		V/ns
Po	Power Dissipation	Tc = 25℃	125	30	W
	Linear Derating Factor	Tc > 25℃	1	0.24	W/℃
R _{0JC}	Thermal Resistance, Junction to Case		1	4.2	°C/W
R _{0JA}	Thermal Resistance, Junction to Ambient		62.5	62.5	°C/W
TJ, TSTG	Operating and Storage Temperature Range		-55 to	°C	

*Drain current limited by maximum junction temperature

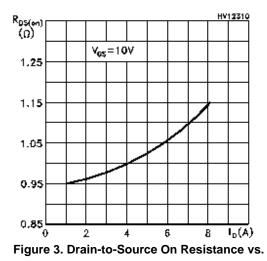
Electrical Characteristics Tc=25°C unless otherwise specified

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
Off Charact	eristic					
V _{(BR)DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_D = 250mA$	650	-	-	V
$\bigtriangleup V_{(BR)DSS}$	Breakdown Voltage Temperature	Reference to 25° C, I _D = 250µA	-	0.5	-	V/℃
/∆TJ	Coefficient					
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 650 V, V_{GS} = 0 V$	-	-	1	μA
		V_{DS} = 520V, T_{C} = 125 $^{\circ}\mathrm{C}$	-	-	50	μA
lgss	Gate to Body Leakage Current	$V_{DS} = 0V$, $V_{GS} = \pm 20V$	-	-	±10	nA
On Characte	eristics					
$V_{GS(th)}$	Gate Threshold Voltage note4	$V_{DS} = V_{GS}, I_D = 250 \mu A$	2	-	4	V
RDS(on)	Static Drain-Source On-Resistance	V _{GS} =10V, I _D = 3.5A	-	1.0	1.27	Ω
g fs	Forward Transconductance	V _{DS} =15V, I _D = 3.5A	-	6	-	S
Dynamic Ch	naracteristics					
Ciss	Input Capacitance		-	1145	-	pF
Coss	Output Capacitance	$V_{DS} = 25V, V_{GS} = 0V,$ f = 1.0MHz	-	130	-	pF
Crss	Reverse Transfer Capacitance		-	28	-	pF
Qg	Total Gate Charge	V _{DD} = 520V, I _D = 7A,	-	41	-	nC
Q _{gs}	Gate-Source Charge	$V_{\rm DD} = 320 \text{V}, \text{ID} = 7 \text{A},$ - $V_{\rm GS} = 10 \text{V}$	-	7.5	-	nC
Q _{gd}	Gate-Drain("Miller") Charge	$\nabla GS = 10V$	-	22	-	nC
Switching C	Characteristics					
t _{d(on)}	Turn-On Delay Time		-	20	-	ns
tr	Turn-On Rise Time	$V_{DD} = 325V, I_D = 3.5A,$ $R_G = 4.7\Omega, V_{GS} = 10V$	-	12	-	ns
t _{d(off)}	Turn-Off Delay Time		-	45	-	ns
t _f	Turn-Off Fall Time		-	15	-	ns
Drain-Sourc	e Diode Characteristics and Maximum Ra	atings			- I	
ls	Maximum Continuous Drain to Source Diode Forward Current		-	-	7	А
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current		-	-	28	А
Vsd	Drain to Source Diode Forward Voltage	$V_{GS} = 0V$, $I_S = 7A$	-	-	1.6	V
t _{rr}	Reverse Recovery Time	$V_{GS} = 0V, I_F = 7A,$	-	400	-	ns
Q _{rr}	Reverse Recovery Charge	di/dt =100A/µs	-	2.6	-	uC

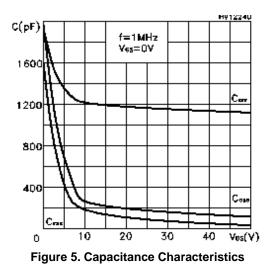

Notes:

1. Repetitive Rating: Pulse width limited by maximum junction temperature

2. L = 10mH, I_{AS} = 7A, V_{DD} = 50V, R_{G} = 25 Ω , Starting T_{J} = 25°C


3. $I_{SD} \le 7A$, di/dt $\le 200A/\mu s$, $V_{DD} \le B_{VDSS}$, Starting $T_J = 25^{\circ}C$

4. Pulse width \leq 300µs; duty cycle \leq 2%.



Typical Performance Characteristics

Figure 1. Output Characteristics

Drain Current and Gate Voltage

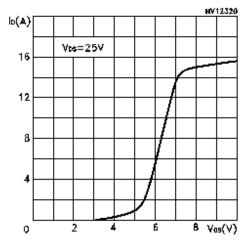


Figure 2. Transfer Characteristics

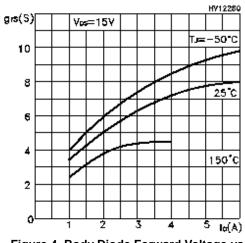
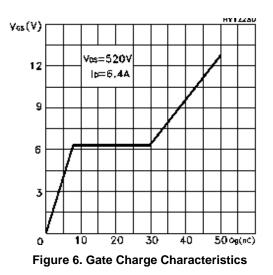
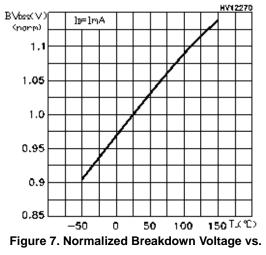
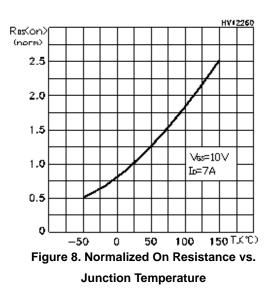





Figure 4. Body Diode Forward Voltage vs. Source Current and Temperature

Junction Temperature

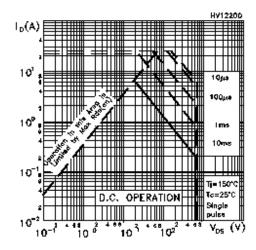


Figure 9. Maximum Safe Operating Area

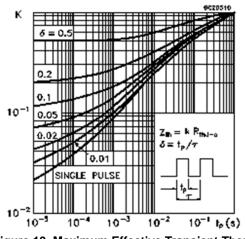


Figure 10. Maximum Effective Transient Thermal Impedance, Junction-to-Case

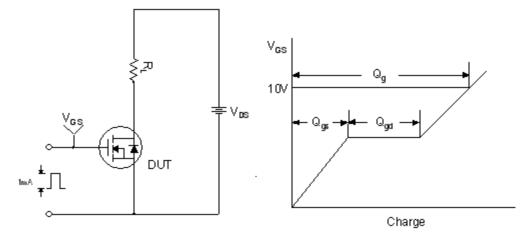


Figure 11. Gate Charge Test Circuit & Waveform

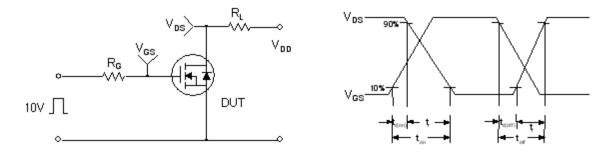


Figure 12. Resistive Switching Test Circuit & Waveforms

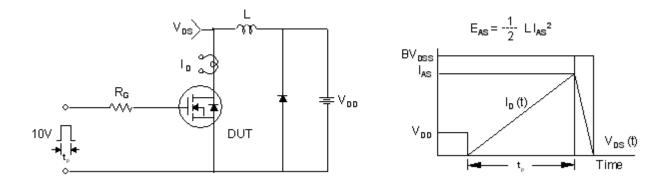
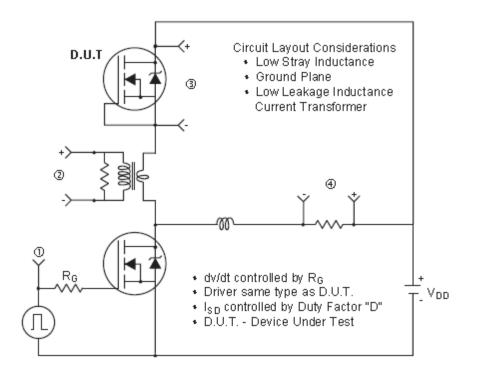
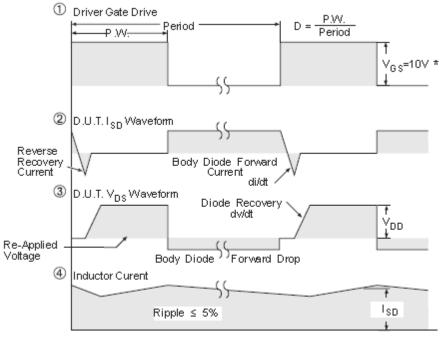




Figure 13. Unclamped Inductive Switching Test Circuit & Waveforms

* V_{GS} = 5V for Logic Level Devices

Figure 14. Peak Diode Recovery dv/dt Test Circuit & Waveforms (For N-channel)