

## **KBP2005 THRU KBP210**

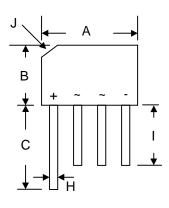
## **BRIDGE RECTIFIERS**

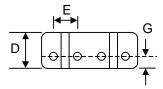
### **FEATURES**

- · UL Recognized File # E469616
- · Reliable low cost construction utilizing molded plastic technique
- · Ideal for printed circuit board
- · Low forward voltage drop
- · Low reverse leakage current
- · High surge current capability

### **MECHANICAL DATA**

Case: Molded plastic, KBP


Epoxy: UL 94V-O rate flame retardant


Terminals: Leads solderable per MIL-STD-202,

method 208 guaranteed Mounting position: Any

Weight: 0.012ounce, 0.33gram

### KBP





| KBP                  |                   |       |  |  |  |  |  |
|----------------------|-------------------|-------|--|--|--|--|--|
| Dim                  | Min               | Max   |  |  |  |  |  |
| Α                    | 14.22             | 15.24 |  |  |  |  |  |
| В                    | 10.60             | 11.68 |  |  |  |  |  |
| С                    | 15.2              |       |  |  |  |  |  |
| D                    | 3.40              | 4.20  |  |  |  |  |  |
| Е                    | 3.60              | 4.10  |  |  |  |  |  |
| G                    | 1.27              | _     |  |  |  |  |  |
| H                    | 0.70              | 0.90  |  |  |  |  |  |
| _                    | 12.7              |       |  |  |  |  |  |
| J                    | 4.2 x 45° Typical |       |  |  |  |  |  |
| All Dimensions in mm |                   |       |  |  |  |  |  |

## Maximum Ratings and Electrical Characteristics

Ratings at 25 ambient temperature unless otherwise specified.

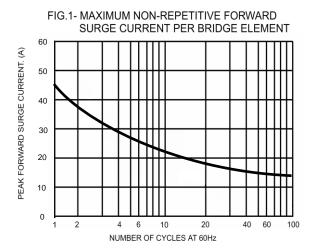
Single phase, half wave, 60Hz, resistive or inductive load.

For capacitive load, derate current by 20%.

|                                                  | Symbols               | KBP2005 | KBP201 | KBP202 | KBP204     | KBP206 | KBP208 | KBP210 | Units |
|--------------------------------------------------|-----------------------|---------|--------|--------|------------|--------|--------|--------|-------|
| Maximum Recurrent Peak Reverse Voltage           | $V_{RRM}$             | 50      | 100    | 200    | 400        | 600    | 800    | 1000   | Volts |
| Maximum RMS Voltage                              | V <sub>RMS</sub>      | 35      | 70     | 140    | 280        | 420    | 560    | 700    | Volts |
| Maximum DC Blocking Voltage                      | V <sub>DC</sub>       | 50      | 100    | 200    | 400        | 600    | 800    | 1000   | Volts |
| Maximum Average Forward Rectified Current        | ī                     | 2.0     |        |        |            |        |        |        | Amp   |
| .375"(9.5mm) Lead Length at T <sub>A</sub> =50   | I <sub>(AV)</sub>     | 2.0     |        |        |            |        |        |        |       |
| Peak Forward Surge Current,                      |                       |         |        |        |            |        |        |        |       |
| 8.3ms single half-sine-wave                      | $I_{FSM}$             | 45      |        |        |            |        |        |        | Amp   |
| superimposed on rated load (JEDEC method)        |                       |         |        |        |            |        |        |        |       |
| Maximum Forward Voltage                          | $V_{\rm F}$           | 1.1     |        |        |            |        |        |        | Volts |
| at 2.0A DC and 25                                | V F                   |         |        |        |            |        |        |        |       |
| Maximum Reverse Current at T <sub>A</sub> =25    | $I_R$                 | 10.0    |        |        |            |        |        |        | uAmp  |
| at Rated DC Blocking Voltage T <sub>A</sub> =100 | I <sub>R</sub>        | 500     |        |        |            |        |        |        |       |
| Typical Junction Capacitance (Note 1)            | C <sub>J</sub> 25     |         |        |        |            |        | pF     |        |       |
| Typical Thermal Resistance (Note 2)              | R <sub>0JA</sub> 30   |         |        |        |            |        | /W     |        |       |
| Typical Thermal Resistance (Note 2)              | $R_{\theta JL}$       | 11      |        |        |            |        | /W     |        |       |
| Operating and Storage Temperature Range          | T <sub>J</sub> , Tstg |         |        |        | -55 to +15 | 0      |        |        |       |

#### **NOTES:**

- 1- Measured at 1 MHz and applied reverse voltage of 4.0 VDC.
- 2- Thermal Resistance Junction to Ambient and form junction to lead at 0.375"(9.5mm) lead length P.C.B. Mounted.


version: 02

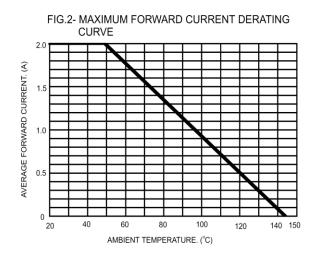


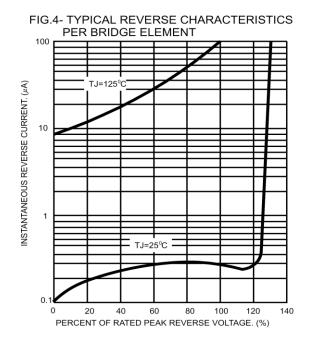
# **KBP2005 THRU KBP210**

# BRIDGE RECTIFIERS

## Characteristic Curves (T<sub>A</sub>=25 ℃ unless otherwise noted)







FIG.3- TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS PER BRIDGE ELEMENT

10.0

1.0

1.0

Tj=25°C
PULSE WIDTH-300µS
1% DUTY CYCLE
INSTANTANEOUS FORWARD VOLTAGE. (V)

